

We2H / 319-UX953#

Compact Wideband Stepped Impedance Filters with Resonant Apertures

D. Rubio, S. Cogollos, V.E. Boria, M. Guglielmi

INDEX

- Challenges and objectives
- Design procedure
- Design example
- Conclusions

Challenges and objectives

- Current wireless communication equipment, for both ground and space applications, require ever smaller and more compact components.
- New filter structures with improved "size-performance" ratio.
- Wideband filters are problematic in terms of design and performance — Replicas and spurious responses.
- Proved solutions for narrowband applications:
 - Stepped Impedance Resonators (SIRs)
 - Resonant Apertures (RAs)

Challenge: use both solutions for wideband filters.

Challenges and objectives

Stepped Impedance Resonators:
Useful against the presence of spurious responses near the passband

Resonant Apertures: Increase the order of the filter

Small overall size

† Selectivity

Challenges and objectives

Principal objectives of this research:

- New structure of compact wideband waveguide filter.
- Significant out-of-band response improvement.
- Combine use of SIRs and RAs.
- Easy to manufacture, small and simple structure.
- High order filters.

1. Lowpass lumped and passband lumped elements prototypes:

- Chebyshev filter. g_i values from RL (Return Losses) and N (Order).
- The filter shall be of order $\frac{N = Na + Nc}{N = Na + Nc}$, where Na = (N + 1)/2 will be the number of RAs, and Nc = (N 1)/2 will be the number of resonant cavities.

2. Series resonator by half-wavelength cavities:

• Calculate the waveguide wavelength λ_{gi} , the slope parameter X_i and the characteristic impedance Z_{0i} of every *i*-th series resonator. These parameters allow us to obtain the dimensions a_i (waveguide width) and b_i (waveguide height) for each rectangular cavity (resonator).

3. Parallel resonators by RAs:

 Matching the response of every shunt resonator with the corresponding iris with suitable dimensions.

4. Shifting the RAs and passband waveguide filter response:

 Power handling capacity enhancement

RAs to the bottom b (height) † †

5. Use SIRs to significantly improve the out-of-band response:

Each section and the adjacent irises are optimized to recover the response of the original <u>isolated</u> cavity.

- 6. Complete filter assembly and final optimization:
- Once each SIR is optimized, the complete filter can be assembled.
- At this point, an additional fine optimization is required to obtain the final response.
- In-band response will be basically identical to the one obtained without SIRs, satisfying the specifications within the pass-band.
- However, the out-of-band response will be noticeably enhanced.
- All this features will be shown in the next design example.

 Wideband WR-90 filter based on RAs and SIRs.

Final model with rounded corners with radius r = 1.1 mm.

Final optimization was performed using the <u>Aggressive Space</u>
 <u>Mapping (ASM)</u> technique, where FEST3D has been used as the Low Accuracy (LA) space, and HFSS as the High Accuracy (HA) space.

SPECIFICATIONS

Parameter	Goal
Order	9
Bandwidth	BW = 1.4 GHz
Return loss	RL > 22 dB
Center frequency	$f_0 = 7.55 \text{ GHz}$
Fractional bandwidth	$W_{\lambda} = 106.6 \%$
WR-90 Waveguide	a = 22.86 mm b = 10.16 mm

- In band specifications agreed.
- Out-of-band response improvement.
- Extremely wide spuriousfree range that goes up to the upper limit of the Xband.
- Simple and compact structure.

 Comparison between SIR filter and staircase filter with the same specifications.

- NOTICEABLE OUT-OF-BAND IMPROVEMENT
- NOTE THE SIMPLICITY
 OF THE STRUCTURE

Conclusions

- The combination of SIRs and RAs was successful.
- Huge spurious-free range.
- Noticeable out-of-band response improvement.
- Filter structure easy to manufacture.
- Very small and compact filter footprint.
- Ideal solution for modern wireless payloads, for both ground and space applications, where improved performance and size reduction are driving requirements.

