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Introduction
— Motivation & Challenges

Proposed Clock and Data Recovery System

— Charge Sampling Phase Detector

— Impact of Data Dependency on the Performance of the Proposed Phase Detector
— Clock Retiming Alignment

Measurement Results at 300K & 4.2K

— Power Consumption

— Recovered Eye Diagram and Phase Noise

— Jitter Transfer and Tolerance

— Comparison Table

 Conclusion
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Encryption/decryption Protein folding

Big data
Drug synthesis Molecule simulation DNA analysis
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* Direct connection between each quantum bit at milli-Kelvin
stage and its control/readout electronics at room temperature

e Scalability limited by interconnect

300K 20-100mK
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e Current proposals for scalable quantum computers

— MUX and DEMUX at milli-Kelvin to perform time multiplexing of qubit control/readout lines

— Cryogenic control and readout circuits at 4.2K to communicate outside the fridge with digital
signals rather than sensitive analog signals
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Quantum Error Correction &
Algorithm Execution
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* A high-speed wireline link is required to communicate real-time data
between control/readout blocks at 4.2K and classical digital processor

at 300K

300K 4.2K 20-100mK
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8 instructions/qubit  §8 1us/qubit $ 1000 qubits
Gates & auxiliary rotations  Envisioned surface code * Near-future quantum
Jh - cycle time of spin qubit roadmap target
4 Py [} [} )
= N " }
L N / \ ,, :: /.x /.’ ,ﬂ ‘ ,’
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‘ 6] L] Zec°o7s
D e %s
Classical Control o o [}
Ce%e’s
Gates  H,T,S,CNOT \ / ¢ . & &
Rotations 2*X, 2*Y ’, /.’ ” ’,

>3Gb/s wireline link required for real-time error correction of 1000 qubits
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/ Heat dissipa_tion\ / Extreme temperature range | ( Device behavior at 4.2K
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Power efficient structure Reconfigurability & robustness Cryogenic aware design
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Minimize transferred jitter High jitter tolerance Low data dependency
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Prior Art Limitations

Classical

on %
>

k=1

[Lee, JSSC'09]

Hogge PD Mixer-Based PD

Data rate pulse generation
High power consumption

* Output pulses at the data rate .
* High power consumption .
« Complexity

Master-Slave Sampler
* Large locking point variation

 Degraded performance at 4.2K
due to high on-resistance of
transmission gates at mid-rail
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Clock Recovery PLL with Charge Sampling PD

Power Efficient Struc’Fu re Recovered
* Cryogenic Aware Design Data
Minimize Jitter Generation

Clock Alignment Loop

» Robustness Clock

* High Jitter Tolerance Alignment

Clock Recovery

Input
Data Charge Recovered
Sampling PD Clock
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* CDR Phase Detector has two critical tasks
1. Extract clock spectral component from data
2. Generating error through phase comparison between data transition and VCO
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Trimmable R tackles Ky variation at
4.2K

* (g trades off stability and output
ripple

* Larger size reduces locking point
variation

* Sets the sampling pulse to ~0.5T,,

Result

* High K 4 of 0.3V/rad
* In-band PN <-150dBc/Hz
 100uA power consumption at 10GHz
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* Wide spectral content of random data modulates the phase of the
recovered clock due to various mechanisms

— Coupling through ground and supply
— Data dependent memory effects

Clock Recovery (PLL)
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* Overall transition density of random data is ~0.5
* Locally the transition density varies over the bitstream

8/16 bits transition = 0.5

D, 5010%0111D0 1| o

2/9 = 0.22!
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High transition density
— A Transition density
O| 1 varies turn on
time of M ,...
O 0|1 1 N
t
000111 v : :
pd 1 Do Which varies
. Tp and the
* locking point
- 5 / ep

oo...o‘11...1v /

Low transition density

1 P03 Py Prock

AMTT-S
|EEE MICROWAVE THEORY &
TECHNOLOGY SOCIETY
(3



@ IMS Analyzing the Data Dependent Sampling Pulse = =

Connecting Minds. Exchanging Ideas. SAN DIEGO

* PLL locks to the weighted average of the entire sequence

* Variation of locking point over different transition densities
Increases in-band phase noise

O‘llO‘l‘O 00\1 111 1‘0 O‘lIOOOO‘l 1‘00‘1‘0‘1\0 00 Oll 11 1‘0‘1 1\0000[
o1t I

(plq)l(pi(pl ¢s PPy (D4 ‘~P2 ‘~P2 ‘~P1‘~P1‘~P1 ‘~P4 P, P Po ‘~P4

(plock,avg = mean([BitStream] * [(plock_weights])

(plock,err = [BitStream] * [(plock_weights] B (plock,avg
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* RMS jitter due to locking point variation is only 34fs,_ .
* Jitter contribution is sufficiently low for required data rate

§10'34
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* Recovery loop does not lock to the center of incoming data

0.25U

Low litter ‘ ,‘ | ‘
Tolerance

_ Recovered
Retimer Data
Input
Recovered
Clock Recover
Data d Clock
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* Recovered clock must be centered for optimal retiming

0.5Ul
‘ :I . Maximum Jitter Recovered
. L Tolerance Data

Input

Data Clock Recovery Clock Alignment Recovered

Clock
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* Delay the recovered clock by 0.25Ul using a buffer
* Large delay variation over PVT reduces lJitter Tolerance

Incoming Recovered
Data Data
I 0.25Ul Delay
—
0.25UlI
Recovered
Clock
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* Delay the recovered clock by 0.25Ul using a buffer
* Large delay variation over PVT reduces lJitter Tolerance

Incoming Recovered
Data Data
+0.1UI
— Tri
0.25Ul Delay

Recovered
Clock
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* Delay the recovered clock by 0.25Ul using a buffer
* Large delay variation over PVT reduces lJitter Tolerance

Incoming Recovered
Data Data
Phase Error to Voltage Conversion
0.25Ul Delay
Recovered
Clock
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* Delay the recovered clock by 0.25Ul using a buffer
* Large delay variation over PVT reduces lJitter Tolerance

WW —_— Incoming Recovered
Data Data
LPF suppresses large ripple at 2f,
0.25Ul Delay
Recovered
Clock
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* Delay the recovered clock by 0.25Ul using a buffer
* Large delay variation over PVT reduces lJitter Tolerance

Incoming Recovered
_ _ Data Data
Amplify error voltage & quantize
0.25Ul Delay
Recovered
Clock

AMTT-S
IEEE MICROWAVE THEORY &
7 TECHNOLOGY SOCIETY
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* Delay the recovered clock by 0.25Ul using a buffer
* Large delay variation over PVT reduces lJitter Tolerance

Incoming Recovered
Data Data
0.25Ul Delay

Integrate Error & close the loop Recovered

Clock
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+ 2.5x reduction: 0.1Ul., down to 0.04Ul,,
 Theoretical Jitter Tolerance increase of 10%

Incoming Retimer Recovered
Data A Data
0.25Ul Delay

Recovered
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« TSMC 40nm process
» 0. 13mm?Zactive die area

* Split ground domains to
reduce data dependent
coupling

e lin
T4
~-and Cali.
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Clk. Align.: 3% Clk. Align.: 5%
— PD: 2% — PD: 3%
_ V/I: 5% V/I: 5%
Retimer + :
Buffer: 22% Retimer +
Buffer: 36%
VCO: 51%
VCO: 68%
300K 4.2K
Total: Total:
4.7TmW 3.1mW

* Power consumption at 4.2K reduces due to increased LC tank Q
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10/4 = 2.5GHz Recovered Clock

Signal Frequency 2.499999562 GHz RBW 10 % SGL
Signal Level -5.76 dBm XCORR Factor 5000
Att 0 dB  Meas Time ~10 5 Meas: Phase Noise

10Gb/s Recovered Data

: 99,683 MHz
=70 dBC/HZ: Spot Noise [Tl] 70 dBc

10.000 kHz 10595 dBLAHz

-80 dBc/Hzl 100.000 b 11435 dicgidz]
1.000 MHz  -12$.79 dBk/Hz
60 dBo/s 10.000 MHz _ -129.61 %téﬂz_
; 100.000 MHz  -140.92 dBr/HZ]

: 1.000 GHz +156.18 dB/HZ
-100 de; z 100 dBc
o RMS jitter [1kHz-1GHz]: 260fs,.
-110 dBl:/‘)—:iz \ — 3 U\ I e r || e - i 2-- ] ‘- Sr ) 1:10: d:BE: ]
-120 dBI:/')—E(Z 1?205 dlBl:i E
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! I\_J\’\,—\ Erfi B R
-130 dBe/Hz 130 dec
i ] T
; Bk e
-140 dBe/Hz 140 dbc
~150 dBe/Hz 150 dBc -
i Nk
! N
1 [l - -
a1l 86mV/div | 16.67ps/div
; gy =
r__gooo [ 2oo0 [ dsooo [ 2000 [ @gooo [ 2000 [ 2000 [ @o00 [ 5000 [ 41000 ]
10.0 kHz Frequency Offset 1.0 GHz
2 Integrated Measurements
Range |Trace| Start Offset | Stop Offset |  Weighting | IntNoise | PM | FM/AM | Jitter |
1 1 10,000 kHz 1,000 GHz -50.77 dBc 234.51 m"/4.09 mrad 396,636 kHz 260.571 fs

* Integrated recovered clock jitter of 260fs,. . for a 10Gb/s PRBS21
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G2IMS  Recovered Clock and Data at 4.2K
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10/4 = 2.5GHz Recovered Clock

Signal Frequency 2.499999526 GHz RBW 10 %
Signal Level -3.76 dBm XCORR Factor 5000
Att 0 dB  Meas Time ~10 s
1 Noise Spectrum

SGL

Meas: Phase Noise
1CIrw PN

21w P

S=5)
SAN DIEGO

10Gb/s Recovered Data

3 H
-110 dBc/Hz

i

H

A;\Lﬂ
]
-

100 kHz 1 MHz 10 MHz 100 MHz Ml[l] -140.90 dBC/HZ
o 98.813 MHz|
" Z Spot Noise [[T1] 3’”5 aiuci
: 10.000 kHz -105.65 dBE/AHz
-80 dBc/Hz—=mn 100000k =T TEs (ReRg |
i 1.000 MHz  -128.34 dBi/Hz
_00 dbe/Ha 10.000 M F128.29 dgcfz]
| 100.000 MHz ~ -141.14 dBEAHzZ
1.000 GHz -15%.60 dBc/Hz
'L i ] ~ 100 dEe
r [IKHz-1GHz]: 275fs_ .
“ MS jitter [1kHz-1GHZz]: .

FAAS 120 doc -

-120.dBeHz L 120 dbc
W\f L B NS
-130 dBc/Hz A e By 130 dBc -
i e o
-140 dBc/Hz 2 140 dic -
-150 dBc/)—i(z 1j5ui dchi .
R S I B B I
-160 dBc/)—ltz 6Ell d =
| dyooo [ 2000 | [ Zooo [ zooo [ 5000 | 50000
10.0 kHz Frequency Offset 1.0 GHz
2 Integrated Measurements
Range |Trace| StartOffset | Stop Offset | Weighting | IntMNoise | PM | FM/amM | Jitter [
1 1 10.000 kHz 1.000 GHz -50.30 dBc 247,40 m°/4.32 mrad 320,480 kHz 274.890 fs

63mV/div 16.67ps/div

* Integrated recovered clock jitter of 275fs__.for a 10Gb/s PRBS21
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-8 300K
—0—4.2K
— STM-256 Mask

Jitter Transfer [dB]
&

Jitter Tolerance [Ul ]

' 1071
10° 10° 10’ 108 10° 10° 10’ 108
Offset Frequency [Hz] Offset Frequency [Hz]

-
3)

* High loop bandwidth shows improved jitter tolerance
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Comparison Table

_ J.Jun L. Kong | M. Verbeke C.Yu

ThisWork | Jeserrs | ssscro| Jsscis | usscao
Architecture Type-ll PLL Tﬁel: . TgpLeL-I ;’I%psl_lll_ Kgpgl_lll_
Temperature [K] 300 4.2 300 300 300 300
Jitter Tolerance
St Ul @ 2 | o8 | o7 2 1 0.35
Rec. Clock Jitter [ps] | 0.260* | 0.275 1.5 0.459 1.46 1.15
Power [mW] 4.7 3.1 5 3 46 21.13
Efficiency [pJ/bit] 0.47 0.31 0.2 0.15 1.8 2.11
Data Rate [Gb/s] 10 25 20 25 10
Area [kum?] 130 39 0.36 50 31
Technology [nm] 40 65 45 40 28
Supply [V] 1.1 1 1 1.15 1
*measured over 2.5m cable ‘limited by instrument

AMTT-S
Y\

|EEE MICROWAVE THEORY &
TECHNOLOGY SOCIETY

< IEEE



o IMS Conclusion

20
Connecting Minds. Exchanging Ideas. SAN DIEGO

* We introduced two techniques for clock and data recovery systems:

— Charge Sampling Phase Detector offering low in-band jitter & data-
dependency

— Phase Alignment to improve jitter tolerance

 We achieve state-of-the-art performance:
— <275fs, . recovered clock jitter at both 300K and 4.2K
— High power efficiency at both 300K and 4.2K

 First Cryogenic CDR enabling high-speed communication for
Quantum Computing Applications
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