

We3A-1

A 10-Gb/s 275-fsec Jitter Charge-Sampling CDR for Quantum Computing Applications

Lennart de Jong, Joachim Bas, Jiang Gong, Fabio Sebastiano and Masoud Babaie

Delft University of Technology, Delft, The Netherlands
QuTech, Delft, The Netherlands

Presentation Overview

Introduction

- Motivation & Challenges
- Proposed Clock and Data Recovery System
 - Charge Sampling Phase Detector
 - Impact of Data Dependency on the Performance of the Proposed Phase Detector
 - Clock Retiming Alignment

Measurement Results at 300K & 4.2K

- Power Consumption
- Recovered Eye Diagram and Phase Noise
- Jitter Transfer and Tolerance
- Comparison Table
- Conclusion

Why Quantum Computing?

Encryption/decryption

Protein folding

Big data

Drug synthesis

Molecule simulation

DNA analysis

IMS Current State-of-the-Art Quantum Computer

- Direct connection between each quantum bit at milli-Kelvin stage and its control/readout electronics at room temperature
- Scalability limited by interconnect

[Photo: Google's 72-bit quantum processor]

Need for Cryogenic Electronics

Current proposals for scalable quantum computers

- MUX and DEMUX at milli-Kelvin to perform time multiplexing of qubit control/readout lines
- Cryogenic control and readout circuits at 4.2K to communicate outside the fridge with digital signals rather than sensitive analog signals

[Photo: Google's 72-bit quantum processor]

Need for Cryogenic High-Speed Link

 A high-speed wireline link is required to communicate real-time data between control/readout blocks at 4.2K and classical digital processor at 300K

Data Rate Requirement

8 instructions/qubit

Gates & auxiliary rotations

1µs/qubit

 Envisioned surface code cycle time of spin qubit

1000 qubits

 Near-future quantum roadmap target

>3Gb/s wireline link required for real-time error correction of 1000 qubits

Challenges for Cryogenic CDR

Extreme temperature range

Device behavior at 4.2K

Power efficient structure

Reconfigurability & robustness

Cryogenic aware design

Low data dependency

Prior Art Limitations

Hogge PD

- Output pulses at the data rate
- High power consumption
- Complexity

Mixer-Based PD

- Data rate pulse generation
- High power consumption

Master-Slave Sampler

- Large locking point variation
- Degraded performance at 4.2K due to high on-resistance of transmission gates at mid-rail

WINS High-Level Overview of Proposed CDR

Recovered

Data

Retimer

Clock

Alignment

Clock Recovery PLL with Charge Sampling PD

- **Power Efficient Structure**
- Cryogenic Aware Design
- Minimize Jitter Generation

Clock Alignment Loop

- Robustness
- **High Jitter Tolerance**

Phase Detection in CDR

CDR Phase Detector has two critical tasks

- 1. Extract clock spectral component from data
- 2. Generating error through phase comparison between data transition and VCO

[Gong, JSSC'22]

Pulse Generation in the Proposed PD

Pulse Generation in the Proposed PD

Pulse Generation in the Proposed PD

Design Considerations

- Trimmable R_D tackles K_{PD} variation at 4.2K
- C_S trades off stability and output ripple
- Larger size reduces locking point variation
- Sets the sampling pulse to $\sim 0.5T_{bit}$

Result

- High K_{pd} of 0.3V/rad
- In-band PN <-150dBc/Hz
- 100uA power consumption at 10GHz

IMS Impact of Data Transition Density on PD Operation

- Wide spectral content of random data modulates the phase of the recovered clock due to various mechanisms
 - Coupling through ground and supply
 - Data dependent memory effects

Variation of Transition Density

- Overall transition density of random data is ~0.5
- Locally the transition density varies over the bitstream

Data Dependent Sampling Pulse

IMS Analyzing the Data Dependent Sampling Pulse Connecting Minds. Exchanging Ideas.

- PLL locks to the weighted average of the entire sequence
- Variation of locking point over different transition densities increases in-band phase noise

$$\phi_{lock,avg} = mean([Bitstream] * [\phi_{lock_weights}])$$

$$\phi_{lock,err} = [Bitstream] * [\phi_{lock_weights}] - \phi_{lock,avg}$$

IMS Data Dependent Sampling Pulse Spectrum

- RMS jitter due to locking point variation is only 34fs_{rms}
- Jitter contribution is sufficiently low for required data rate

Retiming in the Proposed CDR

Recovery loop does not lock to the center of incoming data

Retiming in the Proposed CDR

Recovered clock must be centered for optimal retiming

- Delay the recovered clock by 0.25UI using a buffer
- Large delay variation over PVT reduces Jitter Tolerance

- Delay the recovered clock by 0.25UI using a buffer
- Large delay variation over PVT reduces Jitter Tolerance

- Delay the recovered clock by 0.25UI using a buffer
- Large delay variation over PVT reduces Jitter Tolerance

- Delay the recovered clock by 0.25UI using a buffer
- Large delay variation over PVT reduces Jitter Tolerance

- Delay the recovered clock by 0.25UI using a buffer
- Large delay variation over PVT reduces Jitter Tolerance

- Delay the recovered clock by 0.25UI using a buffer
- Large delay variation over PVT reduces Jitter Tolerance

Clock Alignment Result

- 2.5x reduction: 0.1Ul_{PP} down to 0.04Ul_{PP}
- Theoretical Jitter Tolerance increase of 10%

Die Micrograph

- TSMC 40nm process
- 0. 13mm² active die area
- Split ground domains to reduce data dependent coupling

Power Breakdown

Power consumption at 4.2K reduces due to increased LC tank Q

Recovered Clock and Data at 300K

10/4 = 2.5GHz Recovered Clock

Integrated recovered clock jitter of 260fs_{rms} for a 10Gb/s PRBS21

Recovered Clock and Data at 4.2K

10/4 = 2.5GHz Recovered Clock

10Gb/s Recovered Data

Integrated recovered clock jitter of 275fs_{rms} for a 10Gb/s PRBS21

Jitter Transfer & Jitter Tolerance

High loop bandwidth shows improved jitter tolerance

Comparison Table

	This Work		J. Jung JSSC'13	L. Kong JSSC'19	M. Verbeke JSSC'18	C. Yu JSSC'20
Architecture	Type-II PLL		Type-II PLL	Type-I PLL	Type-II AD-PLL	Type-II AD-PLL
Temperature [K]	300	4.2	300	300	300	300
Jitter Tolerance @ 5MHz [UIPP]	2	0.85#	0.7	2	1	0.35
Rec. Clock Jitter [ps]	0.260*	0.275*	1.5	0.459	1.46	1.15
Power [mW]	4.7	3.1	5	3	46	21.13
Efficiency [pJ/bit]	0.47	0.31	0.2	0.15	1.8	2.11
Data Rate [Gb/s]	10		25	20	25	10
Area [kum²]	130		39	0.36	50	31
Technology [nm]	40		65	45	40	28
Supply [V]	1.1		1	1	1.15	1
#measured over 2.5m cable *limited by instrument						

Conclusion

- We introduced two techniques for clock and data recovery systems:
 - Charge Sampling Phase Detector offering low in-band jitter & datadependency
 - Phase Alignment to improve jitter tolerance
- We achieve state-of-the-art performance:
 - <275fs_{rms} recovered clock jitter at both 300K and 4.2K
 - High power efficiency at both 300K and 4.2K

 First Cryogenic CDR enabling high-speed communication for Quantum Computing Applications

Acknowledgement

 The authors thank for funding Intel Corporation and the Netherlands Organization for Scientific Research under the Veni program with number 17303

Backup Slides

Measurement Setup

