



#### **WE03A-2**

# A Q-band SiGe-HBT Cryogenic Colpitts VCO for Frequency-Division Multiplexed Quantum Computing

E. Vardarli<sup>1</sup>, X. Jin<sup>1</sup>, A. Y.-K. Chen<sup>2</sup>, K. Aufinger<sup>3</sup>, and M. Schröter<sup>1</sup>

<sup>1</sup>Chair for Electron Devices and Integrated Circuits, Dresden, Germany <sup>2</sup>Department of Electrical and Computer Engineering, University of California, Santa Cruz, USA

<sup>3</sup>Infineon Technologies AG, Neubiberg, Germany





#### **Outline**



- Motivation
- Cryogenic Device Characteristics
  - -Transfer Characteristics / Transit Frequency / Noise Figure
- Circuit Description and Design
- Measurement Setup
- Measurement Results
  - -Tuning Range / Output Power / Phase Noise /Spectrum
- Performance Summary
- Conclusion





# Motivation (I)



Fault-tolerant quantum computers need thousands of qubits

- Highly energy-efficient control/read-out needed due to limited cooling power
- Frequency-division multiplexing (FDM) enables simultaneous control/ read-out of qubits
  - Reduces number of LO generators
  - Reduces interface complexity between quantum processor and control/read-out electronics





# Motivation (II)



- FDM requires increased IF bandwidth to allow multiple channels
  - Moving to millimeter-wave frequency bands (> 30 GHz)
    - Higher channel spacing (guard band) to avoid complex/power hungry pulse shaping
    - Area reduction of LC matching for gate-based read-out of spin qubits (on-chip)







### **Cryogenic Device Characteristics**





HICUM/L2 model



#### Cryogenic model extensions

- → tunneling currents\*
- $\rightarrow$  parasitic resistances ( $R_{Cx}$ ,  $R_{Bx}$ ,  $R_{E}$ )

#### Parameter extraction of devices at 4K

- → DC and S-parameter measurement
- → 0.13 µm SiGe-HBT BiCMOS (Infineon AG)
- → CBEBC and BEC configuration
- $\rightarrow$  I<sub>E</sub> = 1 µm to 10 µm



<sup>\*</sup>M. Schröter and X. Jin, "A physics-based analytical formulation for the tunneling current through the base of bipolar transistors operating at cryogenic temperatures," *IEEE Trans. Electron Devices*, vol. 70, no. 1, pp. 247–253, Jan. 2023.



# Cryogenic Device Characteristics (Transfer Characteristics)





- Built-in voltage increases by 160 mV
  - $-V_{\rm BE}$  increased for the same current density
- No improvement/change after 48 K
  - Model parameters are optimized at 48 K
  - Facilitate transient simulation convergence

 $\checkmark g_m = \frac{I_C}{V_T}$  is improved greatly at low/medium injection regime





# Cryogenic Device Characteristics (Transit Frequency)





Peak transit frequency improves by a factor of 1.6

- No improvement after 48 K
- -Increase in g<sub>m</sub>
- -Decrease in  $R_{Cx}$ ,  $R_{Bx}$ ,  $R_{E}$





# Cryogenic Device Characteristics (Noise Figure at Q-band)





- NF<sub>min</sub> drops much below 1 dB at 4K
  - Due to thermal noise sources (4kT↓R↓)

$$\rightarrow R_{\text{BiO}}$$
,  $R_{\text{Bx}}$ ,  $R_{\text{Cx}}$ ,  $R_{\text{E}}$ 

Noise temperature is used instead as metric

$$T_{\text{MIN}} = T_0 \cdot (10^{(NF_{\text{MIN}}/10)} - 1)$$

- Bias below 10 mA/µm² for lower shot noise
- Device noise increases phase noise<sup>†</sup>



<sup>†</sup> E. Vardarli et al., "A W-band SiGe-HBT Colpitts VCO for millimeter-wave applications with an analog tuning range of 12%," 22nd Top. Meeting Silicon Monolithic Integr. Circuits RF Syst. (SiRF), Las Vegas, NV, USA, Jan. 2022, pp. 81–84.



# Circuit Description and Design

G-S-G



#### Differential common-collector Colpitts topology

- Oscillation determined by L<sub>B</sub> and C<sub>varac</sub>
- The cascode buffer enables current re-use and isolation
- Active current source used to adjust current densities
- 18 mA DC current targeted for high output power

#### Unsalicided polysilicon resistors used for biasing

- Lowest temperature dependence (5 %)
- Unit cells are used in resistive dividers to cancel temperature dependence on geometry







# Circuit Description and Design



#### Phase noise determined by:

$$L(\Delta\omega) = 10 \cdot \log(2 \cdot \frac{|I_n|^2}{|V_{tank}|^2 (C_T + C_{BE})^2} \cdot \frac{C_{var}}{(C_T + C_{BE} + C_{var})\Delta\omega^2})$$

To improve phase noise:

- maximize the sum  $(C_{\rm T}+C_{BE})$  and chose  $(C_{\rm T}+C_{BE})\gg C_{var}$
- $\uparrow V_{tank}$  (tank voltage swing)  $\rightarrow$  low bound on  $J_{c}$
- $\downarrow I_n$  (noise current spectral density)  $\rightarrow$  high bound on  $J_c$







# Measurement Setup



#### LakeShore Cryotronics table-top probe station (TTPX)

Six probe arms in total (four DC needles, --- two RF probes)

Liquid helium fed to the chamber through transfer line



FSW67 spectrum analyzer, DC supply

Insertion loss of cables and probes measured with PNA-X

Vacuum pump lowers the air pressure to 10-6 bar





# Measurement Setup (layout)



- Cryogenic GSG probes (67 GHz) are used
- OUT- is terminated with an off-chip 50- $\Omega$  load
- Only a single ground pad is probed due to limitation
- 0- $\Omega$  line provides wideband AC grounding
- Area is 820 μm x 540 μm including pads
- All components EM-simulated with ADS momentum







# Measured Tuning Range



• 13 % fractional bandwidth at RT (39.5 to 45 GHz)

$$C_{j} = \frac{C_{j0}}{(1 - \frac{V_{pn}}{V_{hi}})^{m}}$$

- Tuning range drops at 4 K due to earlier varactor saturation
  - Leads to degradation of  $C_{\text{max}}/C_{\text{min}}$
- Higher oscillation frequency
  - Depletion capacitances decrease at CT
    - Higher junction built-in voltage
  - Diode-varactor capacitance can be fitted
    - $C_{j0}$  (15 %  $\downarrow$  ),  $V_{bi}$  (200 mV  $\uparrow$  ), m ( $\frac{c_{max}}{c_{min}}$   $\downarrow$  )
- Tuning range improvement
  - Weakly dependent MOM capacitor array







### **Measured Output Power**



#### 5.8 dBm single-ended output power at CT

- Variation of only 0.8 dB across tuning range
- High DC current needed to reach this level

#### Improvement compared to RT due to:

- Higher Q-factor of passive elements
  - · higher metal conductivity
  - lower substrate loss due to higher resistivity
- Increased g<sub>m</sub>

#### Two outputs enable PLL integration

- High power relaxes LO buffer requirements for I/Q mixers
- 2<sup>nd</sup> output can drive a divider chain with high isolation



Profile is accurately captured with varactor fitting





#### Measured Phase Noise



- Improvement in phase noise is observed at 4K
  - Q-factor of the tank is higher
    - Freeze-out of low-doped substrate
    - Varactor Q-factor expected to improve
- Thermal noise of devices/resistors is lower
  - Lower noise floor (N=kTB)
  - Lower phase noise at -20 dB/dec region



- Less improvement@ 1 MHz offset
- Higher 1/f<sup>3</sup> PN corner at CT







# Measured Spectrum @ 4K



#### → Clean spectrum is observed at Q-band



#### → Flicker phase noise corner is at 1.3 MHz







# **Performance Summary**



|                               | ISSCC<br>2022 [11]        | ISSCC<br>2021 [7]  | CICC<br>2021 [9] | RSI<br>2018 [17] | This<br>Work      |
|-------------------------------|---------------------------|--------------------|------------------|------------------|-------------------|
| Technology                    | 130 nm<br>SiGe            | 40 nm<br>CMOS      | 40 nm<br>CMOS    | 130 nm<br>SiGe   | 130 nm<br>SiGe    |
| Temperature (K)               | 3.5                       | 4.2                | 4.2              | 4                | 4                 |
| Frequency (GHz)               | 15.9                      | 12.7               | 10.8             | 33.7             | 45.2              |
| Tuning Range                  | 13.9-18.1                 | N/A                | 9.4-11.6         | 30.7-36.7        | 43.9-46.5         |
| P <sub>DC</sub> (mW)          | 3.1                       | 4.4                | 1.7              | 112              | 45                |
| P <sub>OUT</sub> (dBm)        | N/A                       | N/A                | N/A              | ´-21.5           | 5.8               |
| PN @ 1MHz /<br>10MHz (dBc/Hz) | -119.9 <i>/</i><br>-141.7 | -114.5 /<br>-136.2 | -113 /<br>-138   | -110 /<br>N/A    | -95.8 /<br>-120.3 |

- Highest oscillation frequency
- Highest output power
- Coarse tuning can increase IF bandwidth → lower mW/qubit





#### Conclusion



- Mm-wave cryogenic VCO with highest frequency and output power
  - LO buffer requirement relaxed to drive I/Q mixer of read-out/control
- Model parameters of HICUM/L2 is extracted at CT
  - -Reasonable agreement between measurement and simulation
  - -Varactor and substrate modelling can lead to further improvement
- ~5 dB improvement in phase noise at 10 MHz offset
- Mm-wave operation allows high degree of multiplexing
  - Reduces mW/qubit and interconnect complexity







# Back-up Slide





# **Bias Point Sweep**





- Oscillator works down to 0.85 mA/µm² (5.5 mW power consumption)
- Lower output power
- Lower phase noise expected (harmonic balance convergence issue)

