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There are many Kinds of 1 S
transmitter structure depending Baseband 4@ | %
on the application. This represents Signal
a general transmitter, or single Generation
element in a phased array. Upconversion Driver Power Bandpass

Amplifier Amplifier Filter
| y ]
Our components of Interest

Canonically the performance of Power Amplifier (PA) determines the
efficiency as measured by drain efficiency (np) or power added efficiency
(PAE) of a given transmitter.

HOWEVER, what happens when the PA has low gain and multiple drivers
are needed, as in mmWave applications?
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Assume all gain stages have the same peak drain efficiency, identical gain, and
that they draw dc power proportional to output power.
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Assume all gain stages have the same peak Total cascaded gain: 30 dB
drain efficiency, identical gain, and that they 80— R
draw dc power proportional to output power. 75
P; Pouta Pout s Pouen g 70
B 000 —» N §65
Gstage Gstage Gstage é 60
aa
5§55
. (Gstage o 1)Gé\£age g 50 4
Np,tot = MlD,N NT1 5
Gstage -1 c%45

Adding amplifier stages with low gain reduces overall efficiency!
Conventional assumption that final stage is dominant is not true. 1 2 3 4 5 6 7 ] 9 10

Number of Gain Stages (N)
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Must be designed
with drive margin
to ensure the PA
reaches peak
output power

- guaranteed lower

Optimized for
1 efficiency at
: peak output
I power
:
I
]

efficiency! 1 Driver Driver Driver Power
|Amp11ﬁer Amplifier Amplifier ;LAmplifier
____________________ e
Each additional driver amplifier stage adds: How can we minimize the
* |ncreases Gain number of driver amplifiers
* Increases Current Draw (decreasing efficiency) without harming PA

* Adds Additional Failure Points efficiency?
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Path 1
REe
Path 2 RE ut
Path 3

Riso

Parallel connection
ensures output of both
amplifiers contributes to
overall output!

Series connection
increases gain of
GEPA structure!
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‘;d;t;;. — | — i Coupler C; is Implemented as a
gz& - L | % O RFour | 3dB quadrature hybrid.
- Cs; has a coupling factor of 3dB as
' [ a , the main and auxiliary amplifiers are
o Wl DN NG VRV L I
1 (v ) I/ P -9 identical output power.

Core Design Assumptions:
« The Main and Auxiliary amplifiers are identical

(G =Gy = GA)’ (P outmax — Doutmax,M = P out,max,A)

Cs is a quadrature coupler to take
advantage of that structure’s natural
resilience to impedance variation, a useful
property in phased array applications.

« Subtractor element is ideal
(non-idealities absorbed into surrounding components)
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Path 1
Path 2 L | 2 C REout
Path 3 L . 3 ,

- Rz’so
- AG)_l 5.@-..
- L~
Path 1 and 2 must have equal phase to add at the output
Path 3 must differ from Path 2 by 180°

Op1 = Op;

Op, = Op3 — T
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Path 1
RF, in@

Path 2
Path 3

|'I> %62 Cs

~ Gy Py SAN DIEGO (.

71

Full gain expression:

— O >

e

RFout

Rz’so

-4 L~
~ (€, — GyCy) Py

Geepa = |G(1 — Ccy + Ce1Cez) + G2(CeqrCop — Cey)|
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CC2 (dB)

-3

Branch Amplifier Gain of 16 dB:

Selection of Couplers C, and C,

(=) GEPA Gain ] : W 0%
- = -Selected Coupling | X 55 { o
e —— 26 i‘”i’/ 26— |
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o3 23— 1 23 20
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10 dB coupling

" factors selected in

this work such that
Co1 = Cq, and to
ensure realizability in
RO43508B.
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Standalone Main Amplifier 4.5 in by 3.5 in L GEPA 6.8inby5.2in
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Normalized P.S.D. (dB/Hz)

.50 ERate™ . =
1.83 1.88 1.93 1.98 2.03 2.08 2.13 2.18 2.23

Frequency(GHz)
Measured output spectrum for a 100 MHz wide LTE-like signal with 10 dB PAPR
|peakOutputPower (dBm) | Average Drain Efficiency (%) | Average Input Power (dBm)
GEPA (w/DPD) 42.2 26.7 14.5
Standalone Main (w/DPD) 39.9 29.2 18.5
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Peak PAE

(dB) (%)

W. Hallberg, M. Ozen, and C. Fager, “Current scaled Doherty amplifier for high efficiency 2016 Doherty 2.14 11%* 43.0 50*
and high linearity,” in IEEE MTT-S International Microwave Symposium, 2016, pp. 1-4.
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P. H. Pednekar, W. Hallberg, C. Fager, and T. W. Barton, “Analysis and design of a Doherty- 2018 LMBA 2.4 12* 45 .6 60.0
like RF-input load modulated balanced amplifier,” IEEE Transactions on Microwave Theory
and Techniques, vol. 66, no. 12, pp. 5322-5335, 2018.

C. Shen, S. He, and X. Zhu, “Design of broadband high-efficiency Doherty power amplifier 2018 Doherty 2.1 12* 44* 57%*
using post-matching network,” in Asia-Pacific Microwave Conference, 2018, pp. 464—466.

M. Jung, S. Min, and B.-W. Min, “A quasi-balanced power amplifier with feedforward 2022 BaIanced—FFA 3.5 16 5* 30.8 27.2
linearization,” IEEE Microwave and Wireless Components Letters, vol. 32, no. 4, pp. 312— ) ) ) )

315, 2022

W. Sear, D. T. Donahue, M. Pirrone, and T. W. Barton, “Bias and bias line effects on 2022 CIass-AB 2.2 14* 40.0 50*
wideband RF power amplifier performance,” in IEEE Wireless and Microwave Technology
Conference, 2022.

Main Amplifier  2.03 16.0 404 59.2

This Work
GEPA 2.03 20.1 426 57.1

* - read from graph
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Optimal GEPA Consider the following Amplifier:

Branch Amplifier Gain of 8 dB:

2 ‘ !ﬂ = @GEPAEm A. Der, W. Sear, Z. Popovic, G. Lasser, and T. Barton, “A S-C- / K-
I P A0 o o band reconfigurable GaAs MMIC power amplifier for 5G
: \0/ P g applications,” in IEEE MTT-S International Microwave Symposium,
e el =t S 2021, pp. 873-876.
5 _— R Operation at 22 GHz:
~ PR 87 A : :
g Sf’f”,gw D R e sl ol P Single 2-Stage | Optimal  GEPA-
S I o e Amplifier Cascade | GEPA* Cascade A
& T ) L | Pout
Lo T ol 5 o 20.7 20.7 23.7 +3
° 6 - A z (dBm)
- 3
5 P 2. Gain
4 ; 3 o A £ 8 16 11.9 -3.1
7 3 I A il I Vsl (d B)
12 -9 -6 -3
CCI (dB) PAE (%) 30 20.5 30 +9.5

*The optimal GEPA targets maximal gain and assumes no combining loss.

mmWave PAs feature characteristically low per-stage gain, the perfect target for this technique!
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Ef)ompound RF PA's connected simultaneously in parallel and in
series (GEPA) can realize increased gain and output power
compared to a single RF PA.

®This connection adds driver (main) amplifier power directly to the
output at saturation,

Eﬁf both main and aux. amplifiers have identical RF performance
the overall efficiency of the structure will be that efficiency,
minus combining losses.

&The structure is linearizable with DPD.
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Thank you all for your time and attention!
Questions and comments are appreciated!

The material presented is based on work supported by the
National Science Foundation under Grant No. 1846507.




