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Altair

1985
Founded & Headquartered 

in Troy, MI U.S.

$572M
FY22 

Revenue

3,000+
Engineers, Scientists, 

and Creative Thinkers

13,000+ 
Customers 

Globally

86
Offices in 

25 Countries

150+
Altair and Partner 

Software Products

“To transform enterprise decision-making by leveraging the convergence of 
simulation, high-performance computing, and artificial intelligence”
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Mega Trends

Electrification

Electrification – EV’s

AI Driven Simulation

Simulation and AI Driven Design 
and Innovation

Data Driven Enterprise

Decisioning driven by data -
autonomous included here

Semi-Conductor

5G,  Electronic System Design 
and PCB/Semiconductor

Cloud

The Move to the Cloud – Virtual 
workforce

Compliance Risk & 

Fraud / AML

Compliance – Risk and Fraud –
AML – Expertise/Solutions

De-carbonization

Decarbonization, Net-Zero 
commitments, ESG
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Evolution of Simulation- and 
Data-Driven Design
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Convergence

Global evolution toward smart, 

connected everything

Simulation- and data-driven models will 

drive design and operational decisions

Massive exploration of ideas is driving 

the need for advanced HPC and cloud
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Computational Electromagnetics
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Maxwell’s Equations

Maxwell's equations for electromagnetism have been called the "second 

great unification in physics” after the first one realized by Isaac Newton.

James Clerk Maxwell 
(1831-1879)
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Computational Electromagnetics
• CEM is the numerical solution of Maxwell’s equations

o CEM has become an indispensable industrial tool 

Computational cost (CPU time & memory) 
must be as low as possible

Computer modeling
Numerical analysis

CEM tool
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CEM Solver Technologies
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COMPLEXITY OF MATERIALS

FDTD

FEM

MLFMM

MoM

UTD

PO/RL-GO

Full-wave 

Methods

(physically

rigorous solution)

Asymptotic 

Methods

(high-frequency
approximation)

Hybridization to solve 

large and complex 

problems

ACA
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Propagation Models

Topography pixel data

Clutter losses / heights

Ground properties 

Empirical models (Hata, ITU,…)

Vertical plane models 

Dominant path model

3D Standard Ray Tracing (SRT)

2.5D building vector data 

Material properties

Topography pixel data 

Vegetation objects

Vertical plane models (WI)

ITU-R P.1411 model

Dominant path model

3D Intelligent Ray Tracing 

(IRT)

3D vector data

Material properties

Subdivisions, furniture

Direct ray models (Multi-Wall)

Dominant path model

3D Ray Tracing SRT/IRT

Map Data 

Optional Data 

Propagation 

Models
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Connected Devices

Connectivity in Urban 

Environment

Connectivity in 

Indoor Environment

Mobile Device

Base Station

WiFi Router
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Antenna Arrays for 5G

22x22 Array 
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CV2X
Dual band LTE 

Antenna

3D Ray Tracing

Urban Scenario

Base 

station 

sectors

Virtual Drive Test
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Virtual Drive Test
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Virtual EMC Test
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Virtual Flight Test
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Virtual Flight Test
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High Performance Computing

• Start with smart algorithms (N log N versus N2 etc.) and 
best options (AI/ML) in the first place instead of brute-
force HPC

• Evolution of CPUs in terms of clock rate, no. of cores and 
instruction sets (SSE, AVX512, …)

• Massively parallel computing (fast interconnects for MPI, 
hybrid MPI / OpenMP, shared MPI-3 memory windows, …)

• Use HPC enabled libraries (MKL, AOCL, Magma, StarPU, 
Mumps, …)

• GPU accelerations (NVIDIA CUDA, OpenCL)

• Intelligent job scheduling systems supporting
farming out multiple concurrent runs

• Constant process of profiling / performance testing / 
tuning 

By AI.Graphic - Own work, CC BY-SA 3.0, 

https://commons.wikimedia.org/w/index.php?curid=33540287

FLOPS (Floating Point Operations per Second)

for the top 500 supercomputers in the world
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Progress in Computational Power
Aviation: Disturbance of Localizer by Aircraft

Computational effort in 1997:
Laptop Computer today (2023):

Intel i7-9850H 2.6 GHz 

with 6 cores 32 GByte RAM

MoM         351 sec

MLFMM      19 sec

PO             0.4 sec

MoM PO
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Progress in Computational Power

Dimensions 

(approximate)
Length: 4.4 meters

Width: 1.8 meters

Height: 1.3 meters

Surface area: 20 m2

Feko version 2022.2.0

CPU: Intel Xeon Gold 6338 CPU @ 2 GHz

Dual CPU, 32 cores per CPU

Total cores: 64

Memory available: 1 TByte
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Progress in Computational Power

Dimensions (approximate)
Length: 4.4 meters

Width: 1.8 meters

Height: 1.3 meters

Surface area: 20 m2

Feko version 2022.2.0

CPU: Intel Xeon Gold 6338 CPU @ 2 GHz

Dual CPU, 32 cores per CPU

Total cores: 64

Memory available: 1 TByte

No of processes = 64

Frequency Unknowns

No. of 

mesh 

triangles

Runtime 

[s]

Memory 

[GB]
Solver

433 MHz 18,460 12,770 16 2.6 MoM

868 MHz 42,568 29,027 88 13.5 MoM

1.575 GHz 124,724 83,959 1,296 115 MoM

1.8 GHz 161,025 108,610 2,569 193 MoM

2.6 GHz 333,360 224,040 33 16.6 MLFMM

4.7 GHz 1,085,,519 726,928 110 30.7 MLFMM

12 GHz 7,124,696 475,8075 1413 163 MLFMM

24 GHz 28,570,302 19,063,442 7,222 421 MLFMM

37 GHz 67,998,870 45,358,146 18,206* 925* MLFMM

* excludes far field request

68 million unknowns in 5 hours on 64 processors !!
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Optimization via Machine Learning

Machine Learning 

with Regression

Simulation data with multiple variables

Supervised Data needed for ML

Build a mathematical model that 

defines the goal (Return Loss of the 

Antenna etc.) as function of geometry 

variables

Mathematical Model

Optimization using 

Mathematical Model
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Optimization via Machine Learning
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Optimization With 
Evolutionary Learning

Design Space Optimized Layout from ML

• Topology Optimization

• 112 binary input variables: si - Number of possible design combinations: 2112 ≈ 5.2 ∙ 1033 !! 

• 3 Output variables: S11(2.44 GHz), S11(5.22 GHz), sum of conductive honeycomb elements

• Training data: New data generated in each generation of genetic algorithm

WLAN Antenna 
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Optimization With 
Evolutionary Learning

WLAN Antenna 

• Learning Process over 12 generations: 

➢ Objective: Minimize S11 at 2.44 GHz and 5.2 GHz (better than -15 dB)

➢ Constraint: Sum of honeycomb elements < 50

➢ After 4,300 iterations and 12 generations the multi-objective genetic algorithm has identified a 

set of Pareto-optimal solutions (far less than 2112 ≈ 5.2 ∙ 1033 Combinations !!)
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Optimization With 
Evolutionary Learning

WLAN Antenna - Reflection Coefficient for Different Solutions 

5.2 GHz2.44 GHz

Christoph Mäurer, Peter Futter and Gopinath Gampala, “Antenna Design Exploration and Optimization using 

Machine Learning,” European Conference on Antennas and Propagation (EuCAP 2020) Online, April 2020.
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• Use Design of Experiments (DoE) to create 
data for supervised learning

• Build regression model for prediction of 
the antenna gain

• Validate ML model with test data or cross 
validation

• Use validated model for stochastic 
reliability analysis

• Define distribution of input variables

• Stochastic DoE with 10,000 runs using 
fast ML model 

• Evaluate distribution of responses and 
assess the reliability with cumulative 
distribution function

• Radar Antenna Model at 76.5 GHz

• How is the antenna gain affected by 
fabrication tolerances?

• How reliable is the solution? 

• Parametrized Feko model

• Couple Feko with Altair HyperStudy

P
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n
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f 
G

a
in

Gain

95% reliability 

for Gain ≥ 13.7 dBi
Simulation Supervised Learning Stochastic

Evaluation

ML assisted Reliability Analysis for 
Radar Antenna Tolerances
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5G Network Planning Optimization 

• 5G at 3.6 GHz with envelope patterns

• Result of interest is Received Power from all 

active antennas together.

• Four antennas (1, 4, 5, 8) are always 

enabled and the rest can be either off or on.

• Input Variables
• (x, y, z) coordinates for ten antennas

• Azimuth orientation of ten antennas

• OFF or ON for six antennas (four are always ON)

• Total 46 variables!

An example of two individual 

beams of 5G antenna array 
Envelop 

pattern of all 

possible 

beams

Downtown Munich (1000 m × 600 m)

Goal:

“Good coverage” = power above -80 dBm 

in a large percentage of the area.
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5G Network Planning Optimization 

Downtown Munich (1000 m × 600 m)

Optimized with GRSM using ML - Coverage above -80 dBm = 93.8% of area With 5 Antennas
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CLOUD ON DEMAND

Create Scalable HPC Clusters

✓ Multi-Cloud

✓ Multi-Region

✓ Applications

✓ Access Controls

Jobs as service

✓ Multi-tenant compute cluster

✓ No need for a dedicated cluster
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DIGITAL TWIN

Airborne Radar Digital Twin

Challenge
Ensure reliable performance of complex, 

mechatronic scan radar systems 

experiencing realistic environmental 

conditions

“To verify the performance of our radar units 

in virtual flights, it’s fundamental that our Digital Twin 

condenses all physics, plus machine learning models 

based on real-world data, into one single environment.

Together, we built a process to define where and which 

sensors to include in our products to benefit from 

Predictive Maintenance.”

– Romano Lazurlo, CTO Leonardo Electronics  
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Conclusions

CEM Simulations are becoming dominant player in product design and 

Connectivity.

Cloud Computing is becoming affordable with “Cloud On Demand.”

Data Driven Design backed by powerful simulation techniques, Cloud 

Computing and AI/ML brings faster and better innovative products with 

reduced time to market.

Convergence of Simulation, Cloud Computing and AI/ML is key to 

making Digital Twins possible.
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