
1 We3E-2

A Quantum-Walk-Unitary HHL Matrix Equation 

Solver and Its Challenges in the NISQ Era

Xinbo Li*, Christopher Phillips#, Ian Jeffrey*, and 

Vladimir Okhmatovski*

*University of Manitoba
*University of Waterloo



2 We3E-2

Outline

I. Motivation 
II. The HHL algorithm
III. The QWU-HHL algorithm
IV. The challenge in the NISQ era 



3 We3E-2

Outline

I. Motivation 
II. The HHL algorithm
III. The QWU-HHL algorithm
IV. The challenge in the NISQ era 



4 We3E-2

I. Motivation 

• Why do we want to leverage the power of quantum computers?

– Computational electromagnetic answer the quest of electromagnetic 
simulation for complex geometries

– A main contributor to the simulation time: Solving large matrix 
equations with 𝑁 unknowns

– Differential-equation-based methods: Sparse matrix equations

Conjugate Gradient Method: 𝑂(𝑁)

– Moment Method: Dense matrix equations

Fast Algorithms: 𝑂(𝑁log𝑁)

• The HHL quantum matrix equation solver: 𝑂(log𝑁)



5 We3E-2

Outline

I. Motivation 
II. The HHL algorithm
III. The QWU-HHL algorithm
IV. The challenge in the NISQ era 



6 We3E-2

II. The HHL Algorithm

• Name comes from the acronym of its authors: 

[Harrow, Hassidim, Llyod, 2009, 

https://arxiv.org/abs/0811.3171]

• Problem Statement: Given a Hermitian matrix 𝐴
and a normalized right-hand-side vector ȁ ۧ𝑏 , 

prepare a quantum state ȁ ۧ𝑥 (up to a 

normalization factor) such that 𝐴ȁ ۧ𝑥 = ȁ ۧ𝑏

𝑛

𝑛𝑝

Load 

ȁ𝑏〉 QPE
(𝑈)

QPE†

(𝑈)

Rotatio

n

IO/Input register

Clock/Phase register

Ancilla

I

C

A

Registers

• Complexity: 𝑂(log(𝑁) 𝑠2𝜅2/𝜖)

– 𝑁: matrix dimension

– 𝑠: the number of nonzero 

elements per row/column

– 𝜖: desired accuracy

https://arxiv.org/abs/0811.3171


7 We3E-2

II. The HHL Algorithm: Insights
• Quantum supremacy

Quantum superposition allows 𝑛 qubits to represent 

2𝑛 numbers, which needs 2𝑛 classical bits to 

represent

• The idea of HHL

Solve the matrix equation via eigendecomposition:

𝑛

𝑛𝑝

Load 

ȁ𝑏〉 QPE
(𝑈)

QPE†

(𝑈)

Rotation

I

C

A

• The Quantum Phase Estimation (QPE) is the core of the HHL algorithm, and is the erroneous 

step in the HHL algorithm

– The unitary 𝑈 is implemented as 𝑈 = 𝑒𝑖𝐴𝑡 via Hamiltonian simulation in classical HHL 

– The number of qubits 𝑛𝑝 is chosen according to the required accuracy 𝜖𝑄𝑃𝐸 = 2−𝑚 and 

success probability 𝑝: 𝑛𝑝 = 𝑚 + log(2 + 1/2𝑝) [Nielsen, Chuang, 2010]

• The controlled rotation is a simplified block of “do something to the eigenvalue”, i.e., 𝑓(𝜆)
can be implemented for other algorithm and HHL chooses 𝑓 𝜆 = 1/𝜆 [Harrow, Hassidim, 

Llyod, 2009]

There are methods to find (QPE) and invert (controlled rotation) the eigenvalues quantum mechanically



8 We3E-2

II. The HHL Algorithm

• The desired output 𝑥 is distinguished from the garbage via the state of the ancilla.

• The output is stored as a quantum state. If one needs classical information for post-processing, one 

can only retrieve that as the expectation of a measurement operator ۦ ȁ𝑥 𝑀 𝑥 , where 𝑀 is the 

measurement operator.

• The unitary 𝑈 is a choice up to the user. The eigenvalues and eigenvectors of 𝑈 and the Hermitian 

matrix 𝐴 need to be closely related so that the eigendecomposition can be achieved quantum 

mechanically.

IO register

Clock register

Ancilla

0 ⊗𝑛

0 ⊗𝑛𝑝

0

Registers

I

C

A

𝑛

𝑛𝑝

Load 

ȁ𝑏〉 QPE
(𝑈)

QPE†

(𝑈)

Rotatio

n
0

𝑥

0 ⊗𝑛𝑝

1

garbage

0 ⊗𝑛𝑝

Initial

States Output



9 We3E-2

II. The HHL Algorithm-Improvements

• Most HHL improvements the result (achieving better complexity) or removes the 

requirements [Dervovic et al, 2018, https://arxiv.org/abs/1802.08227]

– Reduce the complexity dependence on the condition number from 𝜅2 to 

𝜅log3𝜅 [Ambainis, https://arxiv.org/abs/1010.4458]

– Reduce the complexity dependence on the precision from ploy(1/𝜖) to 

ploy log(1/𝜖) [Childs et al, 2017, https://doi.org/10.1137/16M1087072]

– Removes the requirement on the sparsity of the Hamiltonian matrix 𝐴 [Wossnig

et al, 2018, https://doi.org/10.1103/PhysRevLett.120.050502]

• Most improvements leaves the unitary 𝑈 in the QPE untouched, with the necessity 

of Hamiltonian simulation

• Hamiltonian simulations are not trivial, and if we do not need it explicitly, can we 

remove it in the HHL process?

https://arxiv.org/abs/1010.4458
https://doi.org/10.1137/16M1087072


10 We3E-2

Outline

I. Motivation 
II. The HHL algorithm
III. The QWU-HHL algorithm
IV. The challenge in the NISQ era 



11 We3E-2

III. The QWU-HHL Algorithm
• The Hamiltonian simulation is not a 

necessary explicit step

– The whole QPE block is for the purpose 

of estimating the eigenvalues of 𝐴

– The Hamiltonian simulation 

(implementation of 𝑈 = 𝑒𝑖𝐴𝑡) is needed 

because the eigenvalue and 

eigenvector relationship between 𝑒𝑖𝐴𝑡

and 𝐴 is straightforward

𝑛

𝑛𝑝

Load 

ȁ𝑏〉 QPE
(𝑈)

QPE†

(𝑈)

Rotation

I

C

A

Operator Eigenvector Eigenvalue

𝐴 𝑢 𝜆

𝑈 = 𝑒𝑖𝐴𝑡 𝑢 𝑒𝑖2𝜋
෩𝜃 = 𝑒𝑖𝜆𝑡

• Popular Hamiltonian simulation methods include

– Decomposition of the Hamiltonian [Low et al, 2023, https://arxiv.org/abs/2211.09133v2]: 

difficult to apply to a general Hamiltonian

– Quantum-walk-based methods [Berry, Childs 2012, https://arxiv.org/abs/0910.4157v4]

https://arxiv.org/abs/0910.4157v4


12 We3E-2

III. The QWU-HHL Algorithm
• Inspired by the quantum-walk-based 

Hamiltonian simulation, we use the 

quantum walk operator 𝑊 as the unitary

– 𝑊 ≜ 𝑖𝑆 2𝑇𝑇† − 𝐼

– 𝑇 ≜ σ𝑗=1
𝑁 𝑗 ȁ𝜙𝑗ۧۦ𝑗ȁ

– 𝑆 ≜ σ𝑗=1
𝑁 σ𝑘=0

𝑁−1 𝑘 ȁ𝑗ۧۦ𝑗ȁۦ𝑘ȁ

Operator Eigenvector Eigenvalue

𝐴 𝑢𝑗 𝜆𝑗

𝑊
𝑣𝑗
± =

1 + 𝑖𝜇𝑗
±𝑆

2(1 − መ𝜆𝑗
2)

𝑇 𝑢𝑗
𝜇𝑗
± = 𝑖 መ𝜆𝑗 ± 1 − መ𝜆𝑗

2

where መ𝜆𝑗 =
𝜆𝑗

𝑋
,

𝑋 ≜ max
𝑗,𝑘

𝐻𝑗𝑘

𝑛

𝑛𝑝

Load 

ȁ𝑏〉 QPE
(𝑈)

QPE†

(𝑈)

Rotation

𝑛 + 1

𝑛 + 1

𝑛𝑝

Load 

ȁ𝑏〉
𝑇0

QPE
(𝑊)

QPE†

(𝑊)
𝑇0
†

Rotation

Classical HHL

QWU-HHL



13 We3E-2

III. The QWU-HHL Algorithm
• In the definition,

– 𝑊 ≜ 𝑖𝑆 2𝑇𝑇† − 𝐼

– 𝑇 ≜ σ𝑗=1
𝑁 𝑗 ȁ𝜙𝑗ۧۦ𝑗ȁ

– 𝑆 ≜ σ𝑗=1
𝑁 σ𝑘=0

𝑁−1 𝑘 ȁ𝑗ۧۦ𝑗ȁۦ𝑘ȁ

• 𝑇 is the mapping from ℂ𝑁 to ℂ𝑁⨂ ℂ𝑁 as 

the eigenvector of 𝑊 lives in the latter

• 𝑆 is the swapping operator

𝑛 + 1

𝑛 + 1

𝑛𝑝

Load 

ȁ𝑏〉
𝑇0

QPE
(𝑊)

QPE†

(𝑊)
𝑇0
†

Rotation

QWU-HHL

• 𝑇 translates the initial state of the system (the RHS state) into the eigenbasis of 𝑊

𝑇 𝑏 = 𝑇

𝑗=1

𝑁

𝛽𝑗 𝑢𝑗 =

𝑗=1

𝑁
𝛽𝑗

2 1 − መ𝜆𝑗
2

1 + 𝑖 መ𝜆𝑗𝜇𝑗
− 𝑣𝑗

+ + 1 + 𝑖 መ𝜆𝑗𝜇𝑗
+ 𝑣𝑗

−



14 We3E-2

Outline

I. Motivation 
II. The HHL algorithm
III. The QWU-HHL algorithm
IV. The challenge in the NISQ era 



15 We3E-2

IV. The NISQ hardware

• Logical qubits vs physical qubits

– A logical qubit is a qubit used for programming

▪ Typically made out of a collection of physical qubits

▪ All qubits referred so far are logical qubits

– A physical qubit is a quantum realization of a qubit. 

Physical qubits suffer from decoherence.

• Quantum errors [Devitt et al, https://arxiv.org/abs/0905.2794]

– Coherent errors: undesired gates applied to the system

– Environmental decoherence: qubits losing information due 

to interaction with the environment

– Measurement, etc.

Potential 

applications

Proof-of-

concept 

qubits

A few 

logical 

qubits

~50 

logical 

qubits

~150 

logical 

qubits

~106

logical 

qubits

A full fault-tolerant 

quantum computer 

• Quantum Chemistry

• Machine Learning

• Demonstration of 

Quantum supremacy

• Quantum Secret 

Sharing

• Quantum Co-

processor

[Fruchtman, Choi, 2016, Technical Roadmap for 

Fault-Tolerant Quantum Computing]



16 We3E-2

IV. The NISQ hardware

• Today’s available quantum hardware is Noisy Intermediate-Scale Quantum (NISQ) 

hardware [Preskill, 2018, https://arxiv.org/abs/1801.00862]

• The ultimate goal: Fault-tolerant quantum computer

– low-error logical qubits: Google has demonstrated quantum error correction works 

in practice: increasing the number of physical qubits in a logical qubit yield a 

better logical qubit [Google Quantum AI, 2023, https://doi.org/10.1038/s41586-

022-05434-1]

– Many of these qubits: IBM endeavors to make large-scale quantum computers by 

multi-chip quantum processors with chip-to-chip couplers [IBM development 

roadmap, IBM Quantum Computing | Roadmap]

https://www.ibm.com/quantum/roadmap


17 We3E-2

IV. QWU-HHL on NISQ Hardware

• Unfortunately, Quantum Phase Estimation is not applicable in NISQ hardware

– IBM Jakarta processor: Median CNOT error = 8.193 × 10−3 (from IBM Lab)

– 100 CNOT operations in sequence will cause the accuracy to drop below 50%

– The HHL algorithm requires (tens of) thousands of gates, far beyond the 

capability of current hardware

• If the whole HHL circuit is too deep, what if we apply only one operation at a time?

𝑎

𝑟1
𝑛 + 1

𝑟2
𝑛 + 1

𝑝
𝑛𝑝

Initialization
A single 

gate

Checkpoint (1) Checkpoint (2)



18 We3E-2

IV. QWU-HHL on NISQ Hardware
• We use an elementary 2 × 2 matrix equation as an example

– 𝐴 =
−2 1
1 −2

, ห ۧ𝑏 = ȁ ۧ1 as the equal superposition of the eigenvector

– 7-qubit IBM Jakarta, 1 qubit for all registers except the clock register, which have 

2 qubits

– Eigenphases of 𝑊: 0.00, 0.01(repeated twice), 0.10. Exactly representable using 

2 qubits

– 120 fundamental gates in the entire QWU-HHL circuit

• We execute 120 circuits and record the results at the two checkpoints using both an 

ideal simulator and Jakarta

• On Jakarta, the subcircuit is decomposed into 6 basis gates 𝐶𝑋, 𝐼, 𝑅𝑧, 𝑋, 𝑋, and if-

else



19 We3E-2

IV. QWU-HHL on NISQ Hardware

• The final vector is less than 50% accurate

• The initialization is the main error source in the subcircuit

• The re-initialization and division routine is not effective with Qiskit’s default initialization 

functionality



20 We3E-2

Summary and Future Work

• The QWU-HHL is an improvement to the classical HHL which removes the necessity 

of Hamiltonian simulation by choosing the quantum walk unitary

• The implementation of HHL is not meaningful in current noisy hardware

• The re-initialization and division routine is not effective with Qiskit’s default 

initialization functionality, more sophisticated initialization schemes need to be 

investigated

• NISQ-specific HHL [Yalovetzky et al, 2021, https://arxiv.org/abs/2110.15958] is worth studying 

for deploying HHL to hybrid quantum-classical systems


	Slide 1
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: I. Motivation 
	Slide 5: Outline
	Slide 6: II. The HHL Algorithm
	Slide 7: II. The HHL Algorithm: Insights
	Slide 8: II. The HHL Algorithm
	Slide 9: II. The HHL Algorithm-Improvements
	Slide 10: Outline
	Slide 11: III. The QWU-HHL Algorithm
	Slide 12: III. The QWU-HHL Algorithm
	Slide 13: III. The QWU-HHL Algorithm
	Slide 14: Outline
	Slide 15: IV. The NISQ hardware
	Slide 16: IV. The NISQ hardware
	Slide 17: IV. QWU-HHL on NISQ Hardware
	Slide 18: IV. QWU-HHL on NISQ Hardware
	Slide 19: IV. QWU-HHL on NISQ Hardware
	Slide 20: Summary and Future Work

