

We3E-4

Geometric Optics with Uniform Asymptotic Physical Optics for Ray Tracing of Compound GRIN Lens Systems

W. Wang¹, and J. Chisum¹

¹Electrical Engineering , University of Notre Dame, Notre Dame, US

Main thrust

- MMW beam-scanning: GRIN lens → compound(double) GRIN lenses
- Previous work in IMS: single lens ray-tracing with diffraction theory (GO+UAPO)
- GO+UAPO is not sufficiently **accurate** with compound lenses
- Investigate compound lens ray tracing model

Beam scan solution

- Phased arrays:
 - High gain and wide-angle beam scan
 - Costly, power-hungry, usually narrow band
 - Good scan loss (ns~1, 1.5)
- Gradient Index lenses:
 - Geometric Optics (GO) ray-tracing design
 - High gain but discrete beam scan
 - Power-saving, wide band
 - Scan loss (n_s) is generally high

Scan loss fitted curve(dB): $f(\theta) = \cos^{n_s}(\theta) + G_0$

 G_0 : broadside gain

Single lens state-of-the-art

GRIN lens	Freq(GHz)	Scan range	n_s
[1]	12	±25°	4
[1]	12	±40°	5.4
[2]	9	±30°	7
[3]	13.4	±38°	6.3
[4]	26	±47°	4.4

$$n_s > 4$$

Compound lens system

Beam scanning challenges:

- Single focal point design
- Spillover loss
- Flattened focal surface

Solutions:

- Multiple focal point design
- Phase correction
- Beam squinting

Feed corrective lenslets (FCLs)[5]

Compound lenses in parallel-plate waveguide [6]

DENVER2022

GO Lens design solvers 2D curved ray tracing[9]

1D closed-form lens

- Good broadside performance
- No optimization needed
- No impedance matching: narrow band
- Scan not considered
- [1]S. Zhang, et.al, IEEE TAP, July 2021
- [7] F. Maggiorelli, et.al., IEEE OJAP, Feb. 2021
- [8] A. Paraskevopoulos, et.al., IEEE TAP, Sept. 2021
- [9] J. Budhu, et.al, IEEE TAP, June 2019
- [10]W. Wang, et.al, IMS 2022

- Arbitrary shape and GRIN profile
- Complex aperture field → radiation pattern
- Multi-objective PSO

2D curved ray tracing + UAPO^[10]

- Considering lens-air ϵ_r gap and shadow region
- Calculate shadow region E field using Uniform asymptotic physical optics (UAPO)
- Accurate (~half dB) and fast (1 minute)
- Multi-objective PSO

2D curved ray tracing: Shadow region[10]

- SR can be evaluated by F,D, n_{min}^2
- Total SR commonly exists

- ϵ_r discontinuity causes the shadow regions(SR)
- SR perturbs the curved ray tracing accuracy

Uniform Asymptotic Physical Optics Diffraction [16]

UAPO Procedure:

Wave phase [16] Framework in [17] to $E_d = \left(D_\perp E_\perp^i + D_\parallel E_\parallel^i \right)$ represent integral **Attenuation** Diffraction Incident factor field coefficient

Combining GO and UAPO fields

Near field to far field

Time: 3h vs. 1min

-20

 θ (deg)

-60

-40

20

Ray tracing related

Analytical: determined by focal lens geometry

 $E_{d,Ap}$ depend upon ray tracing solution through focal lens (blue rays)

[16]

Diffraction

coefficient

F: Focal D: Aperture

- Single lenses:
 - Single shadow region
 - Analytical diffracted field calculations
- Compound lenses:
 - Multiple shadow regions
 - Diffraction sources computed from ray traced fields "close to" corner
 - May require ray tracing iterations to find "close enough" ray

Iterative ray tracing

Ray distribution in the aperture at $\phi=0^\circ$ NF->FF requires lambda/2 aperture sampling Goal: ray fills all $\frac{\lambda}{4}$ -spaced units

Iterative ray tracing

Ray distribution in the aperture at $\phi=0^\circ$ NF->FF requires lambda/2 aperture sampling Goal: ray fills all $\frac{\lambda}{4}$ -spaced units

Iterative ray tracing

Ray distribution in the aperture at $\phi=0^\circ$ NF->FF requires lambda/2 aperture sampling Goal: ray fills all $\frac{\lambda}{4}$ -spaced units

Compound lens results

Method	Lei	Time		
	Directivity (dB)	SLL (dB)	3dB BW (°)	
FW	31.4	34.1	4.0	3h
GO propo	sed 31.2	29.4	4.1	2.5min
GO origin	al 31.0	24.0	4.1	2.5 min

Aperture field magnitude Aperture field phase

30 GO proposed FW GO original GO original

Conclusion & Future Work

Conclusion

- realized numerical solver for the compound lens simulation
- Analyzed the field distribution of compound lenses and proposed an iterative ray tracing method

Future Work

- Confirmation of theoretical assumptions
- improve the beam scanning performance

We3E-4

Reference

Connecting Minds. Exchanging Ideas.

[1]S. Zhang, et.al., "Ultra-Wideband Flat Metamaterial GRIN Lenses Assisted With Additive Manufacturing Technique," in IEEE TAP, July 2021, doi: 10.1109/TAP.2020.3044586.

- [2] E. Erfani, et.al., "A High-Gain Broadband Gradient Refractive Index Metasurface Lens Antenna," IEEE Trans. Antennas Propag. 64(5), 1968–1973 (2016).
- [3] A. Papathanasopoulos, et.al, "A novel collapsible flat-layered metamaterial gradient-refractive-index lens antenna," IEEE Trans. Antennas Propag. 68(3), 1312–1321 (2020).
- [4]N. Garcia, et.al, "Reduced dimensionality optimizer for efficient design of wideband millimeter-wave 3D metamaterial GRIN lenses. Microw Opt Technol Lett. 2021
- [5] N. Garcia, et.al, "Feed corrective lenslets for enhanced beamscan in flat lens antenna systems" Optic Express, Apr. 2022
- [6] N. Garcia, et.al, , "Compound GRIN Fanbeam Lens Antenna With Wideband Wide-Angle Beam-Scanning," in IEEE Transactions on Antennas and Propagation, vol. 70, no. 9, pp. 7501-7512, Sept. 2022, doi: 10.1109/TAP.2022.3182420.
- [7] F. Maggiorelli, et.al., "Profile Inversion and Closed Form Formulation of Compact GRIN Lenses," in IEEE OJAP, 2021, doi: 10.1109/OJAP.2021.3059468.
- [8] A. Paraskevopoulos, et.al., "Radial GRIN Lenses based on the Solution of a Regularized Ray Congruence Equation," in IEEE Transactions on Antennas and Propagation, doi: 10.1109/TAP.2021.3111315.
- [9]J. Budhu ,Y. Rahmat-Samii et.al, "A Novel and Systematic Approach to Inhomogeneous Dielectric Lens Design Based on Curved Ray Geometrical Optics and Particle Swarm Optimization," in IEEE TAP , June 2019, doi: 10.1109/TAP.2019.2902737.
- [10]W.Wang, et.al, "Hybrid Geometrical Optics and Uniform Asymptotic Physical Optics for Rapid and Accurate Practical GRIN Lens Design," 2022 IEEE/MTT-S International Microwave Symposium IMS 2022, Denver, CO, USA, 2022, pp. 20-23, doi: 10.1109/IMS37962.2022.9865499.
- [11]N. C. Garcia and J. D. Chisum, "High-Efficiency, Wideband GRIN Lenses With Intrinsically Matched Unit Cells," in IEEE TAP, Aug. 2020, doi: 10.1109/TAP.2020.2990289.
- [12]A. Patri and J. Mukherjee, "Fish-eye shaped dielectric flat lens design utilizing 3-D printing technology," 2016 IEEE (APS/URSI), 2016 1.75/1.28
- [13]J. -M. Poyanco, F. Pizarro and E. Rajo-Iglesias, "3D-printed dielectric GRIN planar wideband lens antenna for 5G applications," 2021 15th EuCAP, 2021
- [14]S. Jain, et.al, "Flat-Lens Design Using Field Transformation and Its Comparison With Those Based on Transformation Optics and Ray Optics," in IEEE AWPL, 2013, doi: 10.1109/LAWP.2013.2270946. 1.42/0.25
- [15]M. Imbert, et.al., "Design and Performance Evaluation of a Dielectric Flat Lens Antenna for Millimeter-Wave Applications," in IEEE AWPL, vol. 14, pp. 342-345, 2015 0.25 2.25
- [16]G. Gennarelli and G. Riccio, "A Uniform Asymptotic Solution for the Diffraction by a Right-Angled Dielectric Wedge," in IEEE TAP, March 2011, doi: 10.1109/TAP.2010.2103031.
- [17] Joseph B. Keller, "Geometrical Theory of Diffraction*," J. Opt. Soc. Am. 52, 116-130 (1962)

Thanks!

