

WE3F-3

Hybrid Filter based on HMSIFW and SICL Technology with Wide-Stopband Suppression

Yanbei Yang¹, Yuandan Dong²

1, 2University of Electronic Science and Technology of China, Chengdu, China

- ☐ Introduction & Motivation
- ☐ Filter Design & Working Principle
- ☐ Simulation & Measurement
- □ Comparison
- ☐ Conclusion

Index:

SIW: Substrate Integrated Waveguide

SICL: Substrate Integrated Coaxial Line

HMSIFW: Half Mode Substrate Integrated Folded Waveguide

TZ: Transmission zero

1. Introduction & Motivation

Traditional SICL structure

Hybrid SIW and SICL structure

- [3] Zhaosheng He, Zhenhai Shao, Xiang Li and Mengkui Shen, "A dualband bandpass filter based on hybrid structure of substrate integrated waveguide and substrate integrated coaxial line," 2016 IEEE MTT-S Int. Microw. Symp.(IMS), 2016, pp. 1-4.
- [4] K. Ning, X. -C. Li and J. Mao, "A Compact Ridged Substrate Integrated Coaxial Line," 2020 *IEEE MTT-S Int. Microw. Symp.(IWS)*, 2020, pp. 1-3.

1. Introduction & Motivation

Hybrid QMSIW and Microstrip line

- [6] N. Grigoropoulos, B. Sanz-Izquierdo and P. R. Young, "Substrate integrated folded waveguides (SIFW) and filters," *IEEE Microw. Wireless Compon. Lett.*, vol. 15, no. 12, pp. 829-831, Dec. 2005.
- [8] Y. Zheng, Y. Zhu, Z. Wang and Y. Dong, "Compact, Wide Stopband, Shielded Hybrid Filter Based on Quarter-Mode Substrate Integrated Waveguide and Microstrip Line Resonators," *IEEE Microw. Wireless Compon. Lett.*, vol. 31, no. 3, pp. 245-248, March 2021.

1. Introduction & Motivation

Motivation:

- Compact size, low cost, good selectivity.
- Wide-Stopband Suppression.
- Easy fabrication hybrid HMSIFW and SICL structure.

Approach:

- Hybrid structure based on HMSIFW and SICL.
- Design with HMSIFW cavities and SICL structure.
- Higher mode is suppressed by coupling-null structure.

- $35.4mm \times 20.2mm$ ($0.472\lambda_0 \times 0.27\lambda_0$).
- $TE_{(0.5)01}$ mode HMSIFW cavities.
- TE_{101} mode is suppressed by coupling-null structure.
- Two Tzs are generated by crosscoupling.

Resonance frequency of the HMSIFW cavity:

$$f_{TE_{mon}} = \frac{c}{2\sqrt{u_r \varepsilon_r}} \sqrt{\left(\frac{m}{w_{eff}}\right)^2 + \left(\frac{n}{l_{eff}}\right)^2}$$

Compared with SIW cavities:

- 1. HMSIW: familiar f_0 , half reduced size.
- 2. HMSIFW: much lower f_0 , half reduced size.

- Electric field distributions of HMSIFW cavities $(TE_{(0.5)01} \text{ mode})$
- Electrical Coupling: HMSIFW-SICL, SICL-SICL
- Magnetic Coupling :HMSIFW-HMSIFW(cross-coupling)

- Coupling curves are extracted from weak coupling structures.
- Coupling coefficient can be controlled by l_f , g, l_w .
- Two TZs are generated by cross-coupling.

- Coupling curves are extracted from weak coupling structures.
- Coupling coefficient can be controlled by l_f , g, l_w .
- Two TZs are generated by cross-coupling.

- Electric field distributions of HMSIFW cavities. (TE_{101} mode)
- TE_{101} is a higher order mode should be suppressed.
- Wide stopband is achieved by coupling-null structure.

3. Simulation & Measurement

- ElectricSubstrate: Rogers RT/Duriod 5880 ,0.508mm, ε_r =2.2, tan D=0.001.
- Measured minimal insertion loss: 1.0dB.
- Measured 3-dB bandwidth: 3.59 to 4.48 GHz (centre frequency: 4.04GHz).

4. Comparison

Reference	[7]	[9]	[10]	[11]	This work
$f_0(GHz)$	10.11	13.2	27	10.04	4
IL (dB)	1.22	1.5	2	1.5	1.07
FBW (%)	11.7	4.5	7.5	4.68	23
Size (λ_0^2)	0.54×0.93	0.40×0.40	2.39×0.75	0.48×1.1	0.472×0.27
Stopband Rejection	>20 dB@2.9 f_0	$>20 dB@2.3f_0$	>20 dB@1.5 f_0	>20dB@1.9f ₀	>20 dB@2.5 f_0
Order	4	2	4	2	4
Technology	Hybrid	SIW	SIW	SIW	Hybrid

 The filter can achieve a wide stopband and lower cost while maintaining a compact size

5. Conclusion

- ➤ Novel hybrid filter based on HMSIFW and SICL structure is proposed.
- TZs are generated by cross coupling to improve the selectivity of filter.
- Coupling-null structure are designed to suppress the transmission of higher mode.
- Compact size, low cost, good selectivity and wide stopband.

Thanks for listening!

Further discussion is welcome at: ydong@uestc.edu.cn

