

Equalization Tuning of the PCle Physical Layer by Using Machine Learning in Industrial Post-silicon Validation

F. E. Rangel-Patiño^{1,2}, A. Viveros-Wacher², C. Rajyaguru³, E. A. Vega-Ochoa², S. D. Rodriguez-Saenz², J. L. Silva-Cortes², H. Shival³, and J. E. Rayas-Sánchez¹

¹Department of Electronics, Systems, and Informatics, ITESO – The Jesuit University of Guadalajara, Tlaquepaque, Jalisco, 45604 Mexico

²Intel Corp. Zapopan, Jalisco, 45019 Mexico ³Intel Corp. Folsom, CA, 95630 USA

Outline

- Introduction to PCIe PHY tuning
- A machine learning (ML) proposal
- Unsupervised and supervised ML
- PHY tuning and optimization
- Clustering and GPR modeling results
- PHY optimization formulation and results
- Conclusions

The Journey of PCIe

Servers

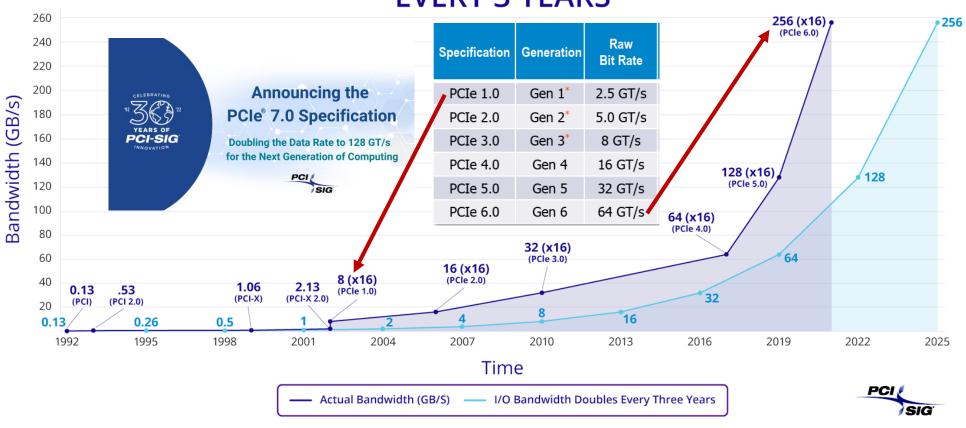
Storage

Communications

Embedded

⊘ I/O BANDWIDTH DOUBLES EVERY 3 YEARS

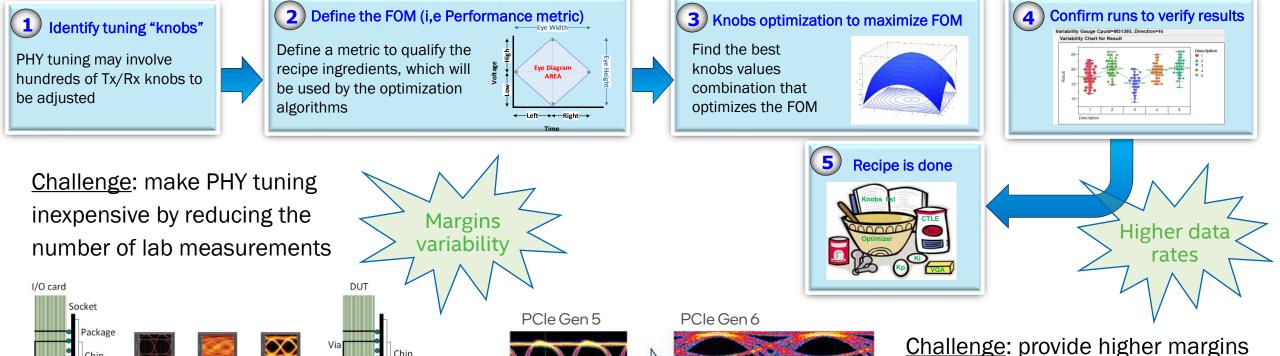
Continuous improvement in data rates and usage models



Usage of PCIe technology continues to grow driven by BW demand

PCIe Tuning Complexity

- PHY tuning is very time consuming
- Typically based on exhaustive search methods to find the "best" Tx and Rx EQ settings



Connector

Backplane (channel)

on a wide variety of devices and

channels, along with process,

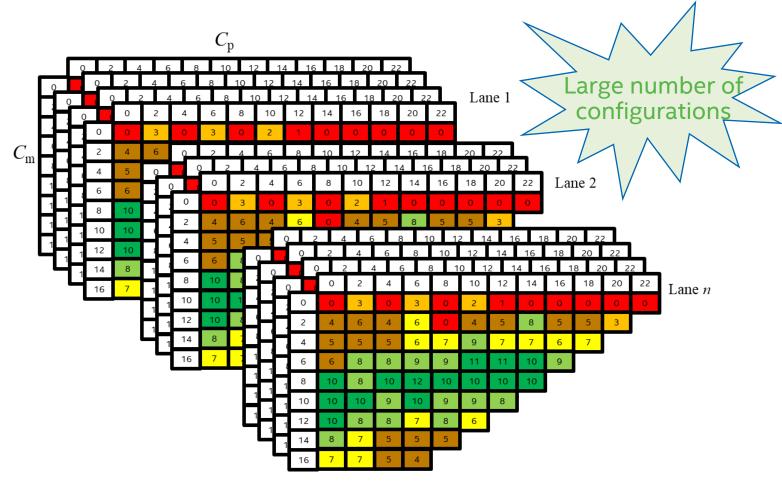
voltage and temperature (PVT)

variation

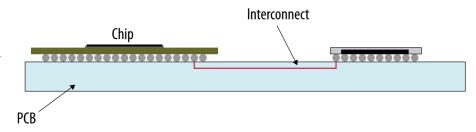
PCIe Tuning Complexity (cont.)

Many EQs maps, obtained from lab measurements, are typically employed

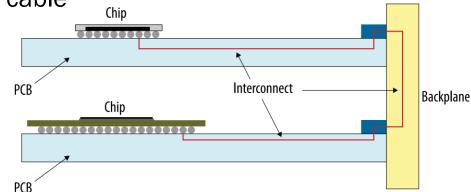
for different lanes, channels, PVT, etc.



Short to mid range interconnect chip to chip within a PCB

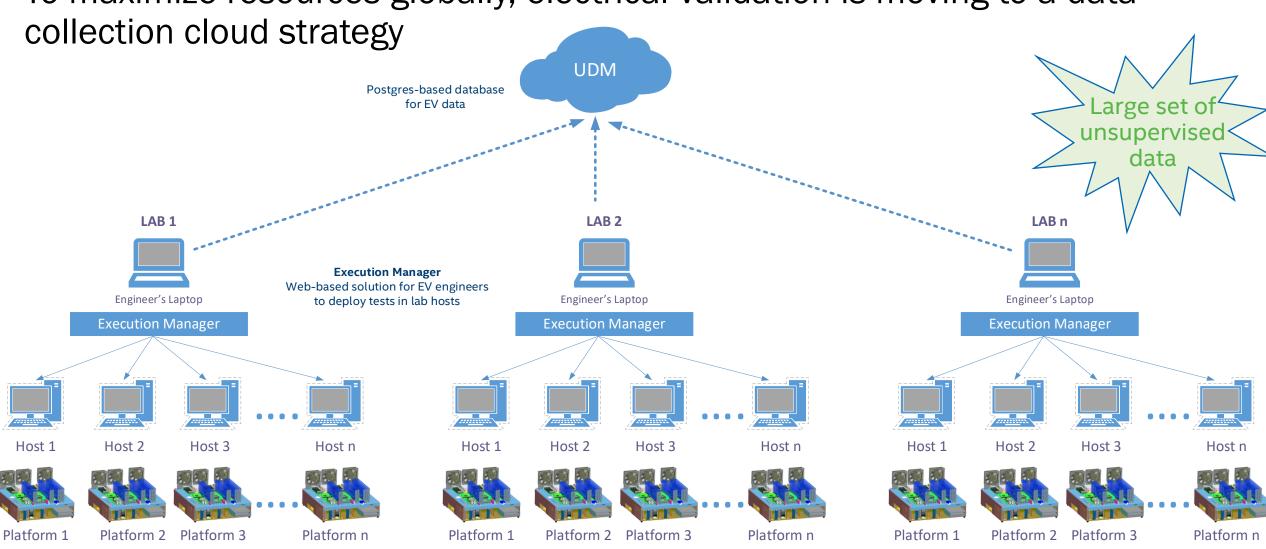


Mid to long range interconnect chip to chip across a backplane/midplane or a cable



Post-Silicon Validation Cloud Tools

To maximize resources globally, electrical validation is moving to a data-

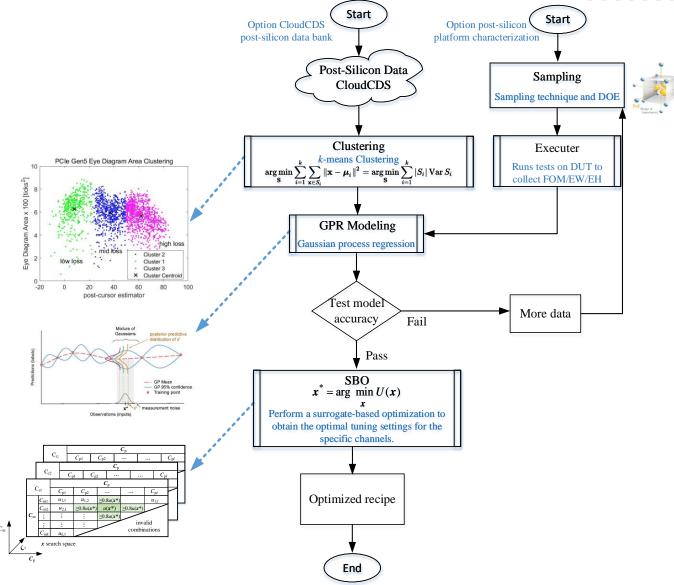


A Machine Learning Proposal

- We propose a combination of unsupervised and supervised ML techniques to tune high-speed PCle5 NRZ and PCle6 PAM4 designs on a real post-Si platform
- Our proposal helps to:
 - Eliminate manual PHY tuning efforts
 - Reduce engineering and debugging costs
 - Accelerate post-silicon validation
- We aim at increasing accuracy and robustness of the solution by using massive and diverse post-Si validation cloud data

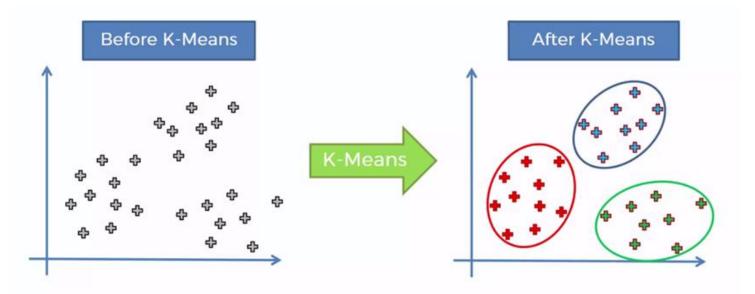
A Machine Learning Proposal (cont.)

- We use unsupervised ML modeling to cluster prior SMV and EQ data
- The clustered data segments are used to train supervised ML models
- These models approximate margins for a given combination of PHY parameters
- The models are used to find optimal PHY tuning parameters through a surrogate-based optimization (SBO)



Unsupervised ML: Clustering

- Unsupervised ML algorithms learn patterns from untagged data
- Clustering is the task of grouping similar data points
- We use the k-means clustering algorithm that partitions n observations into k clusters



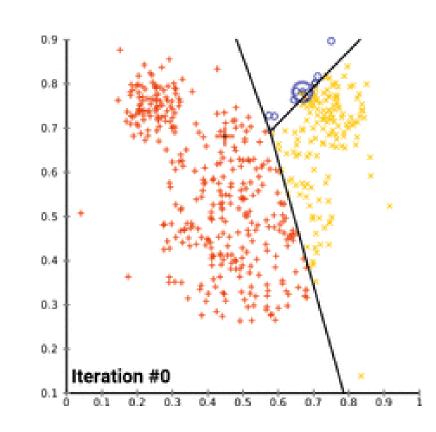
Unsupervised ML: Clustering (cont.)

Given a set of observations $(x_1, x_2, ..., x_n)$, where each observation is a d-dimensional real vector, k-means clustering aims to partition the n observations into $k (\leq n)$ sets $S = \{S_1, S_2, ..., S_k\}$ to minimize the within-cluster variance

We solve:

$$rg\min_{\mathbf{S}} \sum_{i=1}^k \sum_{\mathbf{x} \in S_i} \|\mathbf{x} - oldsymbol{\mu}_i\|^2 = rg\min_{\mathbf{S}} \sum_{i=1}^k |S_i| \operatorname{Var} S_i$$

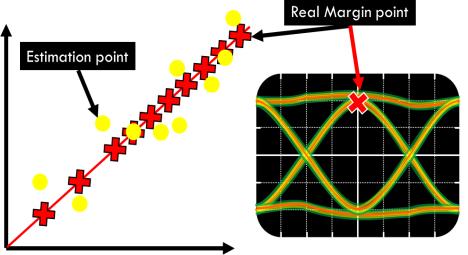
where μ_i is the mean of points in S_i

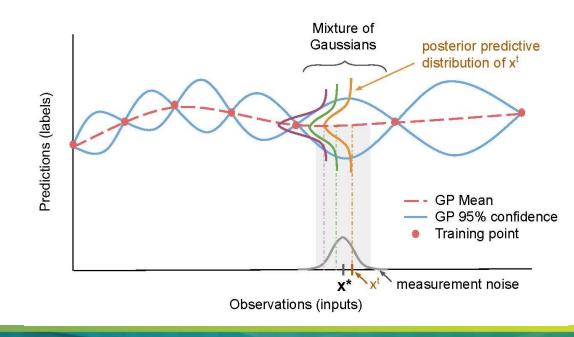


By Chire - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=59409335

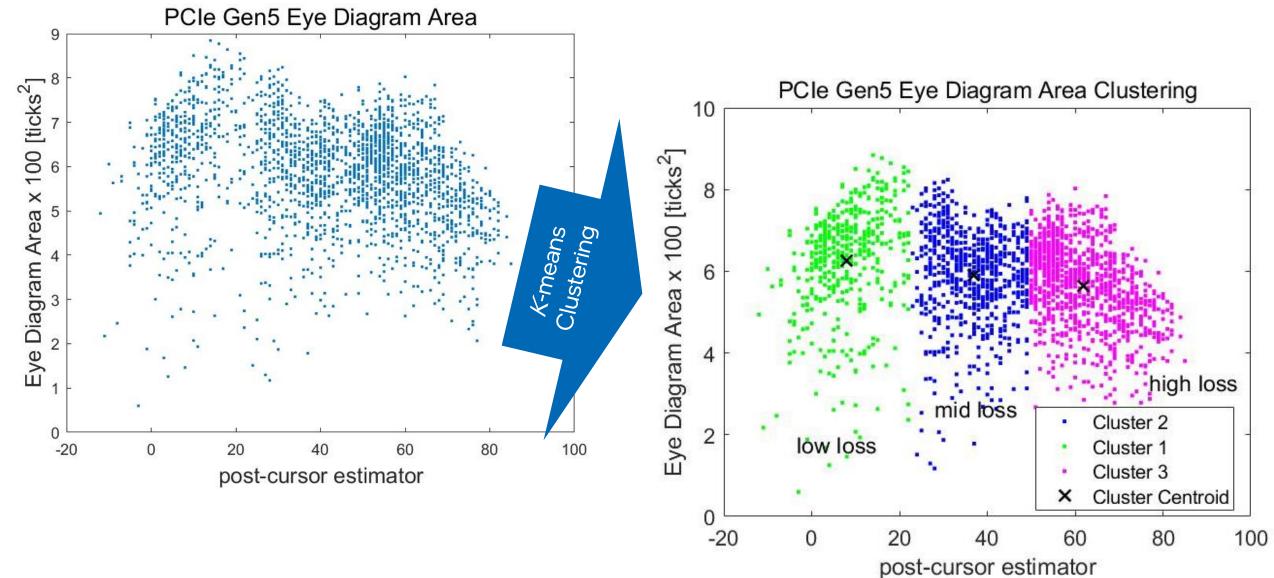
Supervised ML: GPR Modeling

- We use supervised machine learning regression to model eye margins
- Given the large statistical fluctuations in post-Si electrical validation measurements, we use Gaussian process regression (GPR)
- GPR aims to predict not only the outputs based on inputs, but also their variability (probability distribution)

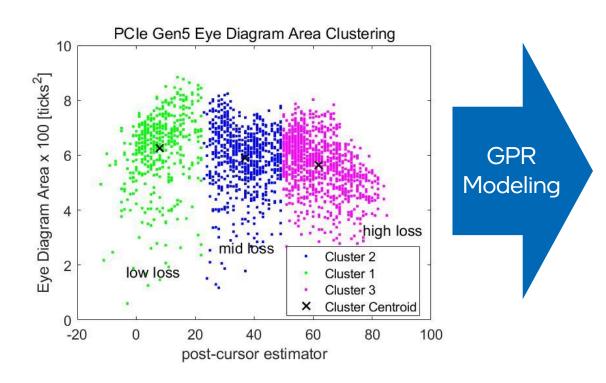


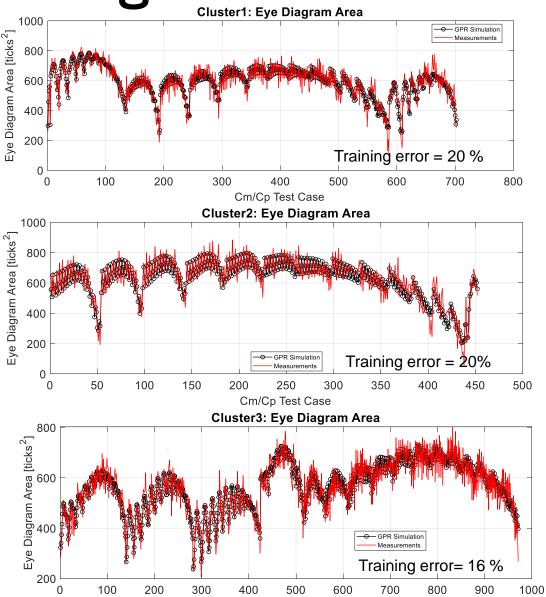


Clustering Results



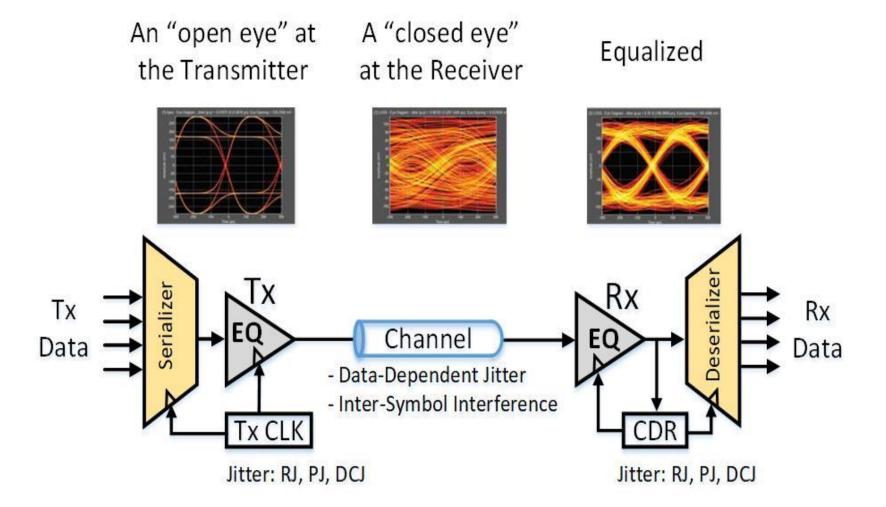
GPR Modeling Results





Cm/Cp Test Case

Equalization: PCIe PHY Tuning



Equalization settings need to be optimized for best link performance

SBO Exploiting GPR Models

• $R_{\rm m}\in\Re^2$: GPR response using functional margins

$$\mathbf{R}_{\mathrm{m}} = \mathbf{R}_{\mathrm{m}}(\mathbf{x}, \boldsymbol{\psi}, \boldsymbol{\delta}) = \begin{bmatrix} e_{\mathrm{w}}(\mathbf{x}, \boldsymbol{\psi}, \boldsymbol{\delta}) & e_{\mathrm{h}}(\mathbf{x}, \boldsymbol{\psi}, \boldsymbol{\delta}) \end{bmatrix}^{\mathrm{T}} - \mathbf{e}_{\mathrm{h}}(\mathbf{x}, \boldsymbol{\psi}, \boldsymbol{\delta})$$

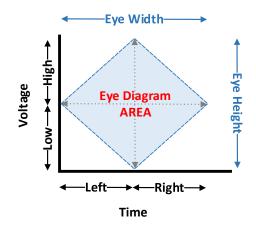
- We solve by direct optimization $x^* = \arg \min U(x)$ where x has the EQ settings
- Our unconstrained objective function is

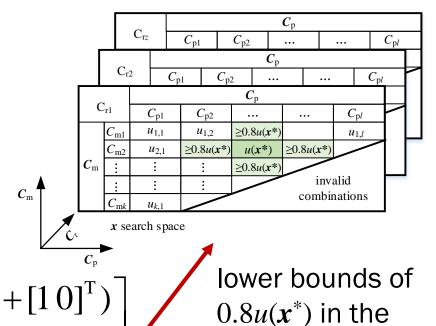
$$U(\mathbf{x}) = -[e_{w}(\mathbf{x})][e_{h}(\mathbf{x})] + L(\mathbf{x}) \left[\frac{|u(\mathbf{x}^{(0)})|}{\max\{l(\mathbf{x}^{(0)})\}} \right]$$

where $x^{(0)}$ is the starting point and L(x) is a corner limits penalty function defined as

$$L(x) = \max\{0, \max\{l(x)\}\}\$$

with
$$l(\mathbf{x}) = 0.8u(\mathbf{x})\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} - \begin{bmatrix} u(\mathbf{x} - [10]^T) & u(\mathbf{x} + [10]^T) \\ u(\mathbf{x} - [01]^T) & u(\mathbf{x} + [01]^T) \end{bmatrix}$$





vicinity of x^*

SBO PCIe PHY Tuning Results

-250

-300

-350

-450

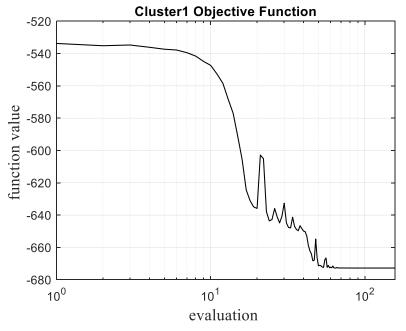
-500

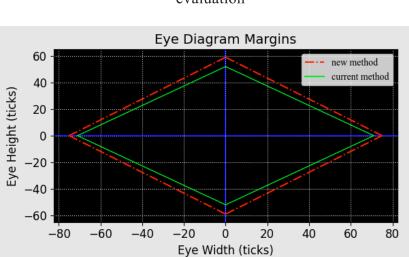
-550

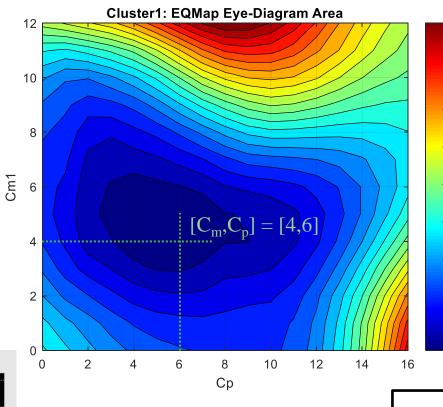
-650

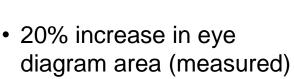
coefficients

10⁰









Current method takes days, while new method takes a few hours

PCIe Gen5 - FIR EQ Opt. Summary

Cluster1 Normalized Coefficients Responses

evaluation

Cluster 1: $x^* = [4 \ 6]^T$, $U(x^*) = -672.77$

Cluster 2: $x^* = [4 \ 8]^T$, $U(x^*) = -719.35$

Cluster 3: $x^* = [5 \ 4]^T$, $U(x^*) = -688.73$

10²

Conclusions

- We propose a new methodology for PCIe link equalization
- Our methodology can be applied to other interfaces for PHY optimization
- We use ML techniques to cluster post-silicon data from different channels and feed those clusters to a GPR-based metamodel for each channel
- We use SBO to find the optimal PHY settings
- A significant increase in eye diagram margins is achieved, accelerating the PHY tuning process

