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• Introduction to PCIe PHY tuning

• A machine learning (ML) proposal

• Unsupervised and supervised ML

• PHY tuning and optimization 

• Clustering and GPR modeling results

• PHY optimization formulation and results

• Conclusions
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The Journey of PCIe
Continuous improvement in data rates and usage models

Usage of PCIe technology continues to grow driven by BW demand

Servers

Embedded

Communications

Storage
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PCIe Tuning Complexity 

PHY tuning may involve 

hundreds of Tx/Rx knobs to 

be adjusted
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Define a metric to qualify the 

recipe ingredients, which will 

be used by the optimization 

algorithms

Identify tuning “knobs”
Knobs optimization to maximize FOM

PCIe Gen 5 PCIe Gen 6

Challenge: provide higher margins 

on a wide variety of devices and 

channels, along with process, 

voltage and temperature (PVT) 

variation

• PHY tuning is very time consuming

• Typically based on exhaustive search methods to find the “best” Tx and Rx EQ settings

Challenge: make PHY tuning 

inexpensive by reducing the 

number of lab measurements

Margins 
variability

Higher data 
rates
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PCIe Tuning Complexity (cont.)

Short to mid range interconnect

chip to chip within a PCB

Mid to long range interconnect chip to 

chip across a backplane/midplane or a 

cable

Many EQs maps, obtained from lab measurements, are typically employed 

for different lanes, channels, PVT, etc. 

Large number of 
configurations
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Post-Silicon Validation Cloud Tools
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UDM

Execution Manager
Web-based solution for EV engineers 

to deploy tests in lab hosts

Postgres-based database 
for EV data

      

To maximize resources globally, electrical validation is moving to a data-
collection cloud strategy

Large set of 
unsupervised 

data
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A Machine Learning Proposal

• We propose a combination of unsupervised and supervised ML 

techniques to tune high-speed PCIe5 NRZ and PCIe6 PAM4 designs on 

a real post-Si platform

• Our proposal helps to:

– Eliminate manual PHY tuning efforts

– Reduce engineering and debugging costs

– Accelerate post-silicon validation

• We aim at increasing accuracy and robustness of the solution by using 

massive and diverse post-Si validation cloud data
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A Machine Learning Proposal (cont.)

• We use unsupervised ML modeling 

to cluster prior SMV and EQ data

• The clustered data segments are 

used to train supervised ML models 

• These models approximate margins 

for a given combination of PHY 

parameters

• The models are used to find 

optimal PHY tuning parameters 

through a surrogate-based 

optimization (SBO)
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Clustering
k-means Clustering

Clustering
k-means Clustering

GPR Modeling

Gaussian process regression 

GPR Modeling

Gaussian process regression 

Perform a surrogate-based optimization to 

obtain the optimal tuning settings for the 

specific channels. 

 * arg min ( )U=
x

x x
SBO

Perform a surrogate-based optimization to 

obtain the optimal tuning settings for the 

specific channels. 

 * arg min ( )U=
x

x x
SBO

Sampling

Sampling technique and DOE

Sampling

Sampling technique and DOE

Option CloudCDS 

post-silicon data bank

Option post-silicon 

platform characterization
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Unsupervised ML: Clustering

• Unsupervised ML algorithms learn patterns from untagged data

• Clustering is the task of grouping similar data points 

• We use the k-means clustering algorithm that partitions n observations 

into k clusters
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Unsupervised ML: Clustering (cont.)

Given a set of observations (x1, x2, ..., xn), where each 

observation is a d-dimensional real vector, k-means 

clustering aims to partition the n observations 

into k (≤ n) sets S = {S1, S2, ..., Sk} to minimize the 

within-cluster variance

We solve:

where μi is the mean of points in Si

By Chire - Own work, CC BY-SA 4.0, 

https://commons.wikimedia.org/w/index.php?curid=59409335
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Supervised ML: GPR Modeling

• We use supervised machine learning 

regression to model eye margins

• Given the large statistical fluctuations 

in post-Si electrical validation 

measurements, we use Gaussian 

process regression (GPR)

• GPR aims to predict not only the 

outputs based on inputs, but also their 

variability (probability distribution)
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Clustering Results
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GPR Modeling Results

GPR
Modeling

Training error = 20 %

Training error = 20%

Training error= 16 %
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Equalization: PCIe PHY Tuning

Equalization settings need to be optimized for best link performance
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• Rm  2 : GPR response using functional margins 
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• We solve by direct optimization

x search space
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• Our unconstrained objective function is

where x(0) is the starting point and L(x) is a 

corner limits penalty function defined as

SBO Exploiting GPR Models
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SBO PCIe PHY Tuning Results

PCIe Gen5 – FIR EQ Opt. Summary

Cluster 1:  x* = [4   6]T, U(x*) = −672.77

Cluster 2: x* = [4   8]T, U(x*) = −719.35

Cluster 3: x* = [5   4]T, U(x*) = −688.73

• 20% increase in eye 

diagram area (measured)

• Current method takes 

days, while new method 

takes a few hours

[Cm,Cp] = [4,6]
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Conclusions

• We propose a new methodology for PCIe link equalization 

• Our methodology can be applied to other interfaces for PHY optimization

• We use ML techniques to cluster post-silicon data from different 

channels and feed those clusters to a GPR-based metamodel for each 

channel

• We use SBO to find the optimal PHY settings 

• A significant increase in eye diagram margins is achieved, accelerating 

the PHY tuning process 


