WE3H-5

N-Way Spatial Power Combiner Using Tapered Antipodal Slotline Feed Array in a Radial Waveguide

I.Karaman, V.Acikel, M.Koc

ASELSAN, Ankara, Turkiye

Outline

- Motivation
- High-power Amplifiers
- Binary-tree vs parallel RF power combiners
- Spatial RF power combiners
- Proposed RF Power Combiner
- Antipodal slot-line impedance transformer
- Conical TL to co-axial TL transition
- Coaxial TL impedance transformer
- Simulation Results
- Measurement Results
- Conclusion

High Power Amplifiers

- Vacuum-tube Power Amplifiers
- Travelling tube amplifiers, klystrons, magnetrons...
- High power with single device
- Solid-state High Power Amplifiers
- Output combination of parallel solid-state amplifiers

Spatial Power Combiners

- Several different combination medium
- Rectangular Waveguide
- Coaxial Waveguide
- Radial Waveguide
- Conical Waveguide
- Waves combined in air and transformed to a coaxial structure

Binary-tree vs Parallel Combiners

Parallel Combination

Step
$\log 2(N)$--

> Output

- Paths are longer (in multiple steps)
- Path loss is high
- Low combining efficiency
- Paths are shorther (one step)
- Path loss is low
- High combining efficiency

Proposed RF Power Combiner

- Has 3 main design stages;
- Antipodal slot-line impedance transformers
- Conical TL to coaxial TL transition

Proposed RF Power Combiner

- For the 16-way power combiner design
- Z_{s} is chosen as 600Ω
- Z_{s} / N is found to be 37.5Ω

Antipodal Slot-line Transformer

- It transforms 50Ω input port impedance to $\mathrm{Zs} \Omega$.
- In our example it transforms 50Ω to 600Ω.

Top layer of slot-line transformer

- It aims a smooth transition between coaxial and conical transmission line mediums.
- Z_{0} is the impedance of conical and coaxial TL's.
- Z_{s} should be equal to Z_{0}.
- $Z_{0}=600 \Omega$ in our case.
- $\theta_{1}=56.3^{\circ}$

$$
Z_{0}=60 \ln \frac{\tan \left(\theta_{2} / 2\right)}{\tan \left(\theta_{1} / 2\right)}
$$

Simulation Results

- Designed combiner was optimized using HFSS
- Simulated impedance at the end of the slotline transformer is shown in the upper Figure
- 16 slot-line transformer combined in parallel and resulted in 37.5Ω as shown in the Figure below

ODIMS Simulation and Measurement Results

- Measured and simulated reflections at the sum port is given in the left most Figure
- Measured and simulated combination loss is given in the middle Figure
- Measured amplitude imbalance is given in the right most Figure

Conclusion

- Power handling
- 500W @ 8GHz - Limited by the power handling of N-type female connector
- Remarkable amplitude imbalance performance
- Maximum $\pm 0.6 \mathrm{~dB}$ (1.2dB peak)
- Remarkable loss performance
- Advantage of displacing power amplifiers on a large cooling plate.

