

WE3H-5

N-Way Spatial Power Combiner Using Tapered Antipodal Slotline Feed Array in a Radial Waveguide

I.Karaman, V.Acikel, M.Koc ASELSAN, Ankara, Turkiye

Outline

Motivation

- High-power Amplifiers
- Binary-tree vs parallel RF power combiners
- Spatial RF power combiners
- Proposed RF Power Combiner
 - Antipodal slot-line impedance transformer
 - Conical TL to co-axial TL transition
 - Coaxial TL impedance transformer
- Simulation Results
- Measurement Results
- Conclusion

PA: Power Amplifier
TL: Transmission Line

High Power Amplifiers

- Vacuum-tube Power Amplifiers
 - Travelling tube amplifiers, klystrons, magnetrons...
 - High power with single device
- Solid-state High Power Amplifiers
 - Output combination of parallel solid-state amplifiers

Spatial Power Combiners

- Several different combination medium
 - Rectangular Waveguide
 - Coaxial Waveguide
 - Radial Waveguide
 - Conical Waveguide
- Waves combined in air and transformed to a coaxial structure

Binary-tree vs Parallel Combiners

Binary-tree Combination

Parallel Combination

- Paths are longer (in multiple steps)
- Path loss is high
- Low combining efficiency

- Paths are shorther (one step)
- Path loss is low
- High combining efficiency

Proposed RF Power Combiner

Coax TL

- Has 3 main design stages;
 - Antipodal slot-line impedance transformers
 - Conical TL to coaxial TL transition

Coaxial transmission line impedance transformer

50Ω

Proposed RF Power Combiner

- For the 16-way power combiner design
- Z_s is chosen as 600 Ω
- Z_s/N is found to be 37.5 Ω

Antipodal Slot-line Transformer

- It transforms 50 Ω input port impedance to Zs Ω .
- In our example it transforms 50 Ω to 600 Ω .

Top layer of slot-line transformer

Bottom layer of slot-line transformer

Conical TL to Coaxial TL Transition

- It aims a smooth transition between coaxial and conical transmission line mediums.
- Z_0 is the impedance of conical and coaxial TL's.
- Z_s should be equal to Z_0 .
- $Z_0 = 600 \Omega$ in our case.
- $\theta_1 = 56.3^{\circ}$

$$Z_0 = 60 \ln \frac{\tan(\theta_2/2)}{\tan(\theta_1/2)}$$

Simulation Results

- Designed combiner was optimized using HFSS
 - Simulated impedance at the end of the slotline transformer is shown in the upper Figure
 - 16 slot-line transformer combined in parallel and resulted in 37.5 Ω as shown in the Figure below

IMS Simulation and Measurement Results

- Measured and simulated reflections at the sum port is given in the left most Figure
- Measured and simulated combination loss is given in the middle Figure
- Measured amplitude imbalance is given in the right most **Figure**

Conclusion

- Power handling
 - 500W @ 8GHz Limited by the power handling of N-type female connector
- Remarkable amplitude imbalance performance
 - Maximum ±0.6dB (1.2dB peak)
- Remarkable loss performance
- Advantage of displacing power amplifiers on a large cooling plate.

