

WE3H-6

Basic study of 79 GHz Band Resin Waffle-Iron Ridge Guide

Y. Aoki¹, H. Tanaka¹, K. Kamo¹, T. Shimizu²

¹Taiyo Yuden Co., Ltd., Japan

²Utsunomiya Univ., Japan

Contents

- What's the WRG?
- WRG basic structure
- Simulation analyzed
- Prototype of the WRG
- Accuracy of the Prototype
- S-parameters measuring system
- Measurement results of S-parameters
- Summary

What's the WRG

- "WRG" is an abbreviation for the Waffle-Iron Ridge Guide.
- It's also known as a "Gap waveguide".
- High performance RF transmission line.

Perfect Electrical Conductor (PEC)

Perfect Magnetic Conductor (PMC)

Perfect Electrical Conductor (PEC)

Electrical Conductor

Perfect Magnetic Conductor (PMC)

WRG basic structure

WRG adopts PMC with meta-surface technology.

Magnetic Conductor side (Meta surface)

Simulation analyzed

E Field Animation

Cut-off mode (w/o Ridge)

Propagation mode (Bend)

Propagation mode (Linear)

Propagation mode (Wave guide, Antenna)

Prototype of the WRG

Specification

- -Material: ABS(+Cu plating), Aluminum
- –Processing Method: Precise machining process
- -Design Frequency: 79GHz
- -Ridge length: 20mm, 30mm, 40mm
- –Layer: 4 layers

Made of aluminium

Made of ABS with Cu plating

Layer 3(Pictures)

Layer 3(Circuit layer)

Accuracy of the Prototype

- Process: Precise machining process
 - -Accuracy: ±5μm (aluminium), ±25μm (ABS)
 - -Laser Microscope: VK-X3000, Keyence

Picture

Laser Microscope

Roughness

0.57µm_rms Aluminum

1.89 µm_rms
ABS+Cu plating

VK-X3000, Keyence

S-parameters measuring system

Equipment

- VNA: N5247B, Keysight Technology
- Frequency extension modules: N5262BW10 x2 (sets)

IMS Measurement results of S-parameters Connecting Minds. Exchanging Ideas.

• These data include both waveguide parts(WR-10).

Roughness(HFSS) : ABS+Cu plating 0.1µm_rms

Ridge length: 30mm

Summary

- The 79GHz transmission line using WRG has been evaluated.
- The circuit layer materials were ABS+Cu plating and aluminum.
- IL(@79GHz): approximately ABS+Cu 0.4dB, aluminum 0.6dB.
 Both data include 2 waveguide losses, Ridge length:30mm.
- Roughness:

Measured: ABS+Cu 1.89µm_rms, aluminum 0.57 µm_rms,

Simulated: ABS+Cu 0.11µm_rms, aluminum 0.2 µm_rms.

Thank you for your attention.

Appendix

Impedance Matching at Bend

Achieves smooth propagation even at bends

Optimal design of corners achieves appropriate impedance matching.

