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* How to probe a qubit?
. . o T=300K
e Dispersive readout ;

schemes
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Yuan et al., Phys. Rev. A 107 022612 (2023)
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G2 IMS Flux-Driven TWPAs — Circuit Model
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@2 IMS Flux-Driven TWPAs - Taylor Expansion
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* Taylor expansion of the current around a flux point o* with i(©*) =0
i(p) =i (¢", ext) - (9 — ¢*) + O(¢?).

* Parametric amplification is achieved by a time-varying modulation of the linear inductance

* The effective potential with the effective

flux operator
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o iMS Nonlinear Coefficients
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e By factoring out the critical current I., we can identify the nonlinear coefficients

1., .
C2 = I—Z/(SO ) Pext) : _ Linear inductance
¢ Pext—¥B
1 di' (", Yex
c3 = (7, Pext) , {mmmmm Three-wave mixing
21 dpext Pext =B
1 d®d'(¢", Pext)
Cq = 26 _ Cross-phase modulation
4[c dgpext Pext =PB

* The phase operator can be expressed in terms of creation and annihilation operators

Az [ k(w) [hk(w)

N ~ dk(w)z—iwt d H.c.
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G0 IMS  Three-Wave Mixing Hamiltonian
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* Resulting Three-wave mixing Hamiltonian

) r oo SO .h C/
HWM:—///(jl<,udw’dz1 op fA-C—gx
1671 c5 o
0 0 Three-wave mixing
> {A 0d I} L ilkp k(w)—k(w’)]z—i(wp—w—w/)t+H.C.i|

i]O]O | fLKLQLUIQ)\/ AzCPfn ¢y
w dw' : X
32m+\/213 g A/

Cross-phase modulation
> “Ap,()‘ &L&w/e—l[/@(w)—k(w’)}Z+i(w—w’)t_|_H.C.:|

* Dispersion factor from Yuan et al., Phys. Rev. A 107 022612 (2023)
fa = veww Mw)A(w)[AW)AW)]?
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Lg
— 000 — * Current-phase relation
oi(ﬁo ¢——0 . I.
i(p) = 5o ¢t [sin(ps,0 + @) — sin(ps,0)]

QY > Nonlinear Coefficients

1] 1
* Induced flux Cy = = [ + cos(y, O(¢ext))] ,
2 BL Pext—¢B
©3,0 + BLsinY o = Pext 1 d
. ¢8=357 cos(©3,0(Pext)) :
* Linear Inductance Pext Poxt =PB
1 z =L s(or0(ge))
i) = | 5+ coslona) | (0= #7) + O U= 13, CPed)
L ex Pext=¥B

Zorin, Phys. Rev. Appl. 6 034006 (2016)
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DC-SQUIDs

* Current-phase relation

i(p)
o—p—9

Spext

Linear Inductance

21.|cos ( Pext

Zorin, Phys. Rev. Appl. 12 044051 (2019)

i(p) = 21, Cos<—> sin(¢p)
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XX%  Linear Inductance

i(©) 1 *
. * ¥ — Pext *
al, i(p) ~ I [oz cos(p™) + Ecos( - )] (@ — %)
€
>
g
* Current-phase relation | N o — ot
B c2 = 3 ozcos(go)—kﬁcos - :
i(p) = al.sin(p) + 1. sin(go SOem) a4t 1 Poxt =B
n *
€3 = 5 acos(p”) + — cos(gp SDeXt) ,
: 2 dpext | n " 1l pext=¢B
* Asymmetry ratio o = 0.29 L@ T . o i
* Number of large junctions n = 3 c4 = ———5— |acos(p”) + — cos Pext
4 dgpext n n 1 lpext=0B

Frattini et al., Appl. Phys. Lett. 110(22) 222603 (2017)
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G2 IMS Results — Nonlinear Coefficients

20
Connecting Minds. Exchanging Ideas. SAN DIEGO

e Largest 3WM coefficient for flux-
driven SNAIL-based TWPAs
| * No zero-XPM point for DC-SQUIDs
g @ —gg—_gggllg , [ a : * Sign change at zero-XPM point for
— | ' RF-SQUIDs and SNAILs which
G 100 1l makes it possible to compensate
El ® g for dispersion-induced phase
| | 7o mismatches
0 0.1 0.2 0.3 0.4 0.5
Op /Dy

Ranadive et al., Nat. Commun. 13 1737 (2022)
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anIMS Results — 3WM Gain
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' ' ' ' ' e Largest 3WM gain (>10 dB) for

—  RF-SQUID

—— DesQUIb flux-driven SNAIL-based TWPA

—— SNAIL

* Losses have been considered by a
substrate with  tano = 0.0025

* Advantage: Better separation
between signal and pump modes

Signal Gain in dB
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* General method for quantum mechanical Hamiltonians and

equations of motion for flux driven traveling-wave parametric
amplifiers

* Different junction topologies have been studied, where
Superconducting Nonlinear Asymmetric Inductive Elements
turned out to be favorable...
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