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. Physical Qubits in Quantum Processor
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Kelly etal. Nature 519,66-69  Hendrickx et al. Nature Kim, Physics 7, 119 (2014)
(2015). 591, 2021.

= Take advantage of Entanglement, Superposition, and Interference of Microscope particles
= Quantum processors need to work at tens of mK to several Kelvin temperature

= Qubits are controlled and readout at RF/microwave frequency.

= Cryogenic electronics is attracting more and more attention.
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J Superconducting Qubit Dispersive Readout
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Krantz, Philip, et al. APR, 6.2,2019
= Up-converting chain generates probing signal
= Readout chain performs the demodulation of the reflected/transmitted signal
= |/Q demodulation similar as which in a wireless communication system.
= Room temperature & Cryogenic (Bi)CMOS solution both need cryogenic LNA.

= With JPA may alleviate the 4 K LNA NF requirement, but design a broadband & high gain JPA is still
challenging.
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 Technologies for Cryogenic Circuit Designs

Technology SaiCla el Limit by Characteristics
temperature

Si BJT 100 K Low Gain
Ge BJT 20 K Carrier freeze out
SiJFET 40 K Carrier freeze out
SiGe HBT 70 mK1 Low flicker noise/medium noise
InP <4 K Extremely low noise/low reliability
GaN <4 K High Ilnearlty/hlgh power
consumption
Kink effect . : : :
CMOS 40 mK for>180nm tech. High integration/high noise
GaAs <A K Low noise/Medium power

consumption
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0. 3~14 GHZ

E. Cha, TMTT, 60(11),2018

- Sub<2 K ENT can be achieved. _ o _ ,
— Low yield leads to very expensive. = Cryogenic InP LNA is is the main products in the market.

* Cryogenic SiGe HBT LNA

= CLNA designed on standard HBT process can achieve
~5 K ENT.

= Doping profiles of B and E and the Ge profile of the
SiGe layer can be modified to achieve <3 K ENT.

- 1 MW~10 mW.
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o Cryogenic CMOS LNA A. eldon, IEEE MWCL, 32(11), 2022.

= Can be integrated with other mixed/ digital signal blocks.
= ~4 K ENT can be achieved at sub-2 GHz applications.

= >10 K ENT for C-band applications.

= High power consumption ~ tens of mW: self-heating

= High yield.

* Cryogenic GaAs LNA

= Often realized by GaAs MMIC.

= GaAs mHEMT can achieve both low NT and low power.

- GaAs pHEMT needs tens of Mw power to obtain several
Kelvin ENT.

In this work, we will implemented CLNA by
discrete GaAs pHEMT devices.
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 Specification of LNA for Dispersive superconducting qubits

= Frequency: about 4~8 GHz.
- Input return loss: >10 dB. (~8 dB can be acceptable due to the circulator.
= Output return loss: >10 dB.
= Gain: >30 dB.

= Linearity: not importance for single qubit readout. When FDMA readout is applied,
OIP3 need to be seriously considered.

= Noise Figure (Equivalent noise temperature): ~5 Kelvin.
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 The discrete GaAs HEMTs (CEL3512K2).

- With 0.3~0.45 dB NF .., at frequency 4~8 GHz at room temperature (RT, 300K).
= Available gain: ~12 dB under (2 V, 10 mA).
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— The LNA consists of three stages: the 15t stage is a low-noise stage, the 2"d stage provides sufficient
gain, and the 3" stage increases gain further (>30 dB) while achieving wideband output impedance
matching.

- The stage R,,~Rp;are applied to stabilize the high gain amplifier.

- R, ,~R,; were used to flatten the in-band gain variation.
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* Input Low Noise Matching Network

R 3.0

1111 241\ = NFmin
De-coupling Capacitors :

C1=4.8 pF m4g NF

Ro1=7 Q & Dual Frequency
--------------- S Matchin
o 21.2- g
'TL S
: E = 0.6—
' TL, f f
E 00 I|I|1I|I|I|2IIIII

- Six transmission line sections TL, at the S of the M1, (TL,~TL;) at the gate and were used to achieve
dual-frequency optimum noise impedance

= The biasing condition of the three stage are set the same to save cryogenic wire resource
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o IMS Optimization of Input RL

TL,
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— The elements in the drain of M, can be used to optimize the RL due to C,
Z\=f[IMN, Z,]

= IMN was applied to achieve optimum noise matching.

- Z, can adjust the S, while without (or only slightly) influencing on NF.
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MIMS 2nd and 3 Stages
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= The inter-stage IMNs were implemented by drain and gate biasing elements and the DC-block capacitors.
= The biasing condition of the 2"? & 3" stages are set same as 15t stage to save cryogenic wire resource.
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= Rogers 5880 with the minimum thickness (0.254 mm).

- Dielectric constant (g,) at CT decreases <6% from its RT value (2.2).

- PCB is around 27 mmx46 mm and is installed in a bronze box.

= The non-conductive silicone absorbers are used to avoid cavity effect and the self-excited oscillation.
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L0IMS Measurements Setups

= The LNAs are fixed in a 4-Kelvin cryostat for cryogenic characterization.
= S-parameters: Rohde & Schwarz VNA (ZNB 20).
= NF: Keysight FieldFox N9918A with the NF measurement option.
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S0IMS RT S-parameters & NF

50 [Keysight Technologies NOG18A. SN MY58312070
297 K HD (o Thu, 28 Jul 2022 8:42:07 AM
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- Room temperature biasing conditons: VDD=2V, |,=27.6 mA (V;~-0.61 V).
= The gain at RT is 36+2.5 dB in ~3~7.5 GHz

- The S, is<-7dBandS,, is<-10 dB.

= NF<1 dB with minimum ~0.75 dB.
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= Fortwo samples (1# and 2#) were characterized.

= .The LNA consumes a 9.5 mA current under 2 V VDD of at CT

= Gain >30dBin 3.5 ~7.5 GHz.

= In good agreement from sample to sample.
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= The NF at CT is measured using the cold attenuator method.
= The cold/hot noise sources were provided by the Keysight 346B.
= A 20 dB coaxial attenuator was used for thermal isolation.

= The influence of the test fixtures (cables, attenuator, and adapters) is de-embedded.
= The LNA shows ~5 K equivalent NT at 6~7 GHz

< : > IEE IWAVE THEORY &
7 TECH GY SOCIETY




L0IMS OIP3 and Stability Factor

« OIP3atCTandRT * k-factor at CT and RT
g L1 50_5 — 1# Sample
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a w3
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= The OIP3 was tested using two tones with 20 MHz offset frequency.

= The linearity degraded ~6 dB at CT comparted with RT due to the which is the increment of the |-V
threshold slope.

= The LNAs’ k-factors are > 1.5 in the operating band indicating the stability of the LNAs.
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GLIMIS  Qubit Measurement Using the LNA
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= The LNA module was installed on a 4 K plate of BlueForce DR.
= We got a best visibility of 0.891 for distinguishing states |0> and | 1>,
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S0IMS Conclusion

* An cryogenic LNA is necessary no matter RT quantum processor
controller solution or the emerging cryogenic CMOS controller.

* An LNA operating at 3.6 K was desighed and implemented.

 The LNA has an average gain of 32 dB and a minimum equivalent
NT 5 K in the frequency range of 3.5 to 7.5 GHz.

* This work demonstrates that discrete GaAs devices can be used to
achieve cryogenic LNA for transmons qubit readout.
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