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Applications of THz Waves

• THz sensing, imaging, spectroscopy

• THz is promising for short-range point-to-point wireless communication

• THz wireless links (6G or beyond) with potential data rate approaching 1 Tbps
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THz Switches for Tunable/Reconfigurable Circuits, 

Components and Systems

• Advanced Sensing and Imaging (e.g., 

spectroscopic imaging)

• Multiple-band transceiver

• Tunable filters in adaptive 

communication systems

• Reconfigurable frequency-selective 

surfaces

• Switch-based antennas/arrays (beam 

steering, beam forming, frequency 

tuning, etc.)
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Current Switching Technology

• MEMS: fabrication complexity, low operation speed, and limited scaling

• Phase-change material: thermally driving and reliability issue

• Solid-state:  low FOM and high insertion loss

• A Novel Technology for High Performance THz switching are required

FOM=1/(2 RONCOFF) 
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Theory and Modeling: Optically-Controlled 

Photoconductivity Modulation for THz Waves

• Physics-based model:
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• Free carriers generated (photon energy > bandgap)

• Photoconductivity can be controlled

• THz transmission can be spatially modulated



8 <We4B>-<3>

Theory and Modeling: Experiment Verification

• Photo patterns projected on Si and Ge wafers

• Photoconductivity is modulated by changing the light intensity

• Higher light intensity leads to higher modulation depth

• Ge offers a higher modulation depth than Si

 

Fig. 1. (a) Experimental setup for CW THz modulation and reconfigurable THz quasi-optical 

component using photo-induced pattern on semi-insulating silicon. (b) Highlight image of the 

modulator setup. (c) Render of the key component in the proposed system that enables 

reconfigurable THz modulation. DLP projector generates reconfigurable conductive patterns on 

the silicon to interact with the incident THz beam. (d) Modulation types demonstrated in this 

work. Left column: unpatterned gray scales for THz intensity modulation; middle column: 

patterns for reconfigurable THz polarizer; and right column: exemplary reconfigurable aperture 

array patterns for potential THz coded aperture imaging.  

 

radiation and the photo-excited carriers in a semiconductor can be adjusted by the intensity of 

illumination. 

In detail, when light illuminates on a semiconductor material, free carriers composed by 

electrons and holes may be generated as long as the energy of light surpasses the band gap 

energy of the semiconductor. These photoexcited carriers survive for a scattering time t, 

before they are annihilated by recombination and thereby contribute to photoconductivity of 

the semiconductor material. The complex conductivity of the semiconductor can be expressed 

by the Drude response!! ! ! = ! ! (! !
! ! )/(1 − !" #), which is characterized by a Lorentzian 

resonance centered at zero frequency with a linewidth t-1
, i.e., the inverse of the carrier 

scattering time. The amplitude of the Drude conductivity response is determined by the 

plasma frequency wp, defined as ! !
! = ! ! ! /(! ! !

∗), with n being the mobile charge carrier 

density, e0 the permittivity of free space, t  the scattering time, m
*
 the effective mass 

contributed by both electron (me) and hole (mh) following a relation 1/m* = 1/me + 1/mh and e 

the electron charge [16, 17]. Photoexcitation generates equal amount of electrons and holes 

and the carrier density n is determined by the energy density of the incident photons [18].  The 

expression indicates that by tuning the plasma frequency wp with varied extension of 
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Application Demonstration

❖ Coded aperture imaging
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❖ Beaming steering ❖ Waveguide attenuator
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• CPW with shunt configuration for potential low IL and high isolation

• Insulation layer to form non-contact configuration

• Capacitive coupling for reducing contact resistance

• Transparent sapphire is used for through-substrate illumination

• Potential integration of micro-LED for operation

Switch Design and Configuration Using Unconventional 

Device Architecture
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Advantages for Non-contact Switch Configuration

• Photo-induced free carriers generated in the 

semiconductors

• Avoids electron diffusion at the metal-

semiconductor interface

• Reduces rapid surface recombination

• Capacitively coupling avoids contact resistance

• High carrier concentration can be maintained

• Enhanced achievable photoconductivity

• Maximizes switching performance at THz

Non-contact architecture
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Physics-Based Modeling and Analysis

• 0.5 μs and 1 ms carrier lifetime for 

Si and Ge, respectively

• Auger recombination leads to 

saturation

	

• Semiconductor first becomes a 

lossy dielectric with increasing light 

intensity
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Full-Wave Simulation

• On-state insertion loss <0.2 dB

• Off-state isolation > 70 dB (L=200 μm)

• Light intensity of 100 W/cm2
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Prototype Demonstration

• On-wafer measurement

• Two extenders were used

• With native oxide serving as the 

insulation

D-band

G-band

Si chip

• Silicon chip of ~73 μm was used

• Estimated Si area of 5 mm2

• Insulator: Si native oxide (~2 nm)



17 <We4B>-<3>

Results and Analysis: D-Band

• On-state insertion loss < 0.4 dB

• Off-state isolation increases with increasing of driving current

• Isolation of 32 dB has been achieved at 170 GHz

• S11 remains low level due to power absorption of semiconductor
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Results and Analysis : G-Band

• On-state insertion loss (IL) < 1 dB (This can be improved with 

matching design)

• Off-state isolation(Iso) is ~22 dB at 220 GHz

• Low-reflection property caused by lossy dielectric
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Technology Frequency(GHz) Insertion loss/Isolation 
(dB)

Size(mm2)

This work
(Initial demo.)

Optical @170
@220

0.4/32
2/22

~0.04

This work
(With optimization)

Optical 110-220 0.2/70 0.04

MWCL, 2021 [1] CMOS @170 ~3/~35 0.163

IMS, 2017 [2] CMOS @170 2.4/~30 0.145

MWCL, 2016 [3] MEMS @170 ~1.9/20 N.A

Performance Comparison

[1] L. Wu, H. Y. Hsu and S. P. Voinigescu IEEE MWCL

[2] Y. Wang et al.,2017 IMS

[3] S. Tolunay Wipf, A. Göritz, M. Wietstruck, C. Wipf, B. Tillack and M. Kaynak, IEEE MWCL
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Discussion

• Fully integrated THz switches with μ-LEDs can be 

realized for smaller size and higher performance

• Lower on-state insertion loss (e.g., < 0.2 dB) is 

expected with further impedance matching

• Off-state isolation of 70 dB can be achievable by 

using Ge

• The operation frequency can be scaled up to 500-

750 GHz based on previous experiment results

• The power consumption could be significantly 

reduced by integrating FE (Ferroelectric) latching 

for non-volatile switching

FE-Assisted Non-volatile switching

Hysteresis effect in FE 

material (e.g., HZO)
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Potential Applications: Tunable/Reconfigurable THz 

Filters

Initial prototype at microwave frequency 

showing high performance and strong 

versatility
• Strong tunability and reconfigurability

• Multiple functionality

• Scalable to THz frequencies
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Potential Applications: THz Beam Steering

-90 -60 -30 0 30 60 90
-15

-10

-5

0

N
o

rm
a

li
z
e

d
 G

a
in

 (
d

B
)

Angle (degree)

 β=-120°

 β=-60°

 β=0°

 β=60°

 β=120°

• Phased array fed by matrix network

• Reconfigurable Input excitation controlled by switches

• Beam steering and forming can be achieved

❖ Switch-based  feeding network for THz phased arrays

Simulation results for switch-based beam steering
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Conclusions

The novel THz switch features:

• Extremely low insertion loss (0.4 dB at 170 GHz, 0.2 dB is potentially 

achievable with matching design)

• Superior isolation (32 dB at 170 GHz, and 70 dB is expected with Ge)

• Compact size (~0.04 mm2)

• Broadband operation (from 110 GHz to 220 GHz)

• Scalability (the operation frequency can be scaled up to 500 GHz and 1 THz)

• Potential for advanced THz circuits (e.g., tunable bandstop filters and switch-

based  networks)
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