

We4C-4

200-W 13.56-MHz Class-E PA with Gate-Driver ICs

Frederick H. Raab

Green Mountain Radio Research

fraab@gmrr.biz

Copyright © GMRR all rights reserved.

200-W 13.56-MHz Class-E PA with Gate-Driver ICs

- Introduction
- Concepts
- Matched loads
- Mismatched loads
- Other frequencies
- Conclusions

Why 13.56 MHz?

- RF heating
- Cancer treatment
- Skin tightening
- Plasma generation RF lighting, semiconductor process
- Clothes drying
- Welding plastic pipe
- Close to 20-meter ham band
- Other HF ISM 6.78, 27.12 MHz
- Communications 1.8 30 MHz

TRADITIONAL RF CHAIN

- Progressively higher power
- Broadband transformers, ferrite-loaded
- Gate-swamping resistors

EXAMPLE HF/VHF RF CHAINS

10 mW

100 W

10 mW

175 W

GATE DRIVERS

AC COUPLED

INTERNAL WORKINGS

AMPLIFIER BLOCK DIAGRAM

- LVDS line receivers
- CMOS gate drivers
- 50-V LDMOS gemini RF-power FET
- Ferrite-loaded balun
- LCLC output filter (6.25 +j7.2 Ω)

SIMPLIFIED CIRCUIT

- Push-pull class E
- Bias GDs and FETs at threshold

- 3.125 + j3.6 Ω at drains
- 200 W with $V_{DD} = 35 \text{ V}$

PROTOTYPE

10 mW

200 W

- Compact
- Separate supplies
- Gate drivers socketed
- Changeable output filter

PROTOTYPE

Input

Wave shaper

$$Gates - V_{DD} = 0$$

Gates –
$$V_{DD}$$
 = 25 V

Drains –
$$V_{DD}$$
 = 25 V

POWER AND EFFICIENCY

•
$$\eta = P_o / P_i$$

• $\eta_o = P_o / (P_i + P_{GD} + P_{WS})$

•
$$\eta_o > 70\% P_o > 8 W$$

•
$$\eta_o > 80\% P_o > 32 W$$

•
$$\eta_o > 81\% P_o > 32 W$$

MODULATION CHARACTERISTICS

AM linearity 0.14% rms error (57 dB C/I for two tone) Feedthrough 6 mW (-45 dBc) Limited drive-mod capability

4° for 2.6 – 200 W EER Precise amplitude & phase

MISMATCHED LOADS

- Reality for most ISM aps
- Often impedance varies rapidly
- Maintaining match difficult

- Pi-net tuner
- SWR = 1.5, 2
- 8 points on each circle

TRADITIONAL THEORY

• $V_{DD} = R = 1$

Negative drain current

Negative drain voltage

CLASS E WITH MOSFET

- Reverse diode inherent
- No negative drain voltage
- Shortens off time

NEW THEORY - MOSFET CLASS E

• $V_{DD} = R = 1$

Negative drain current

No negative drain voltage

CLASS E WITH MOSFET

- FET turns on with v_D positive
- Capacitive discharge
- Drop in efficiency
- Off time unchanged

- Diode clamps v_D at 0
- No capacitive discharge
- Efficiency ideally high
- Off time shortened

POWER AND EFFICIENCY

- Only one dip in efficiency
- High efficiency in diode region
- Maximum v_D reduced
- SWR = 1 200 W, 81%
- SWR = 1.5 95 - 175 W, 76 - 80%
- SWR = 2 57 - 159 W, 68 - 78%

Note: Transformer and filter rotate γ by 197°.

POWER CONTROL

DIODE ACTION

- Sort of an autotuner
- Maintains efficiency but
- Power varies

CONSTANT POWER

- Measure forward power
- Switching regulator
- Adjust V_{DD} by feedback

OTHER FREQUENCIES

- Change drain capacitors
- Change output tuner
- Heat sinks on gate drivers
- No retuning of drivers

POWER AND EFFICIENCY

- 200 W, 3.5 30 MHz
- 175 W, 1.8 MHz
- Culprit: Transformer

- 83 76%, 1.8 27 MHz
- 70%, 30 MHz
- Culprit: Drive

DRIVE POWER AND FEEDTHROUGH

- Maximum 2.75 W
- Conventional 3 4 W

- Maximum -45 dBPEP
- Typical SSB or I/Q mixer -40 dBc

CONCLUSIONS / RECOMMENDATIONS

DEMONSTRATED

- HF class-E PA with LDMOS and gate drivers
- 175 200 W, 93 70 % with matched load
- Efficiency > 68% for SWR up to 2
- Drive chain simple, small, low-cost, lower power
- ISM applications 6.78, 13.56, 27.12 MHz
- Communication applications 1.8 30 MHz

FURTHER INVESTIATIONS

- Improve layout and transformer
- Exploit the diode effect

