A Low Power 60 GHz 6 V CMOS Peak Detector

Z. Tibenszky¹, C. Carta¹, F. Ellinger¹

¹Technische Universität Dresden, Dresden, Germany
Outline

• Peak detector: definitions, applications and requirements
• Applied new ideas
• Design details
• Experimental results
• Comparison
• Conclusion
Peak Detector

Also known as:
• envelope detector
• power detector
Peak Detector

After PA in TX path
- Linearization
- Output power control
- Overvoltage protection

in RX path
- Amplitude demodulator
- Gain
- High Linearity

• High V_{in}
• Back-off
Detection architectures

Peak
Rectifying & max holding

Average
Rectifying & filtering

RMS
Squaring & filtering

Thermal
Crystal detector

- First crystal detector patent in 1901 (Bose)
 - Spark-gap era
- Silicon crystal detector 1906 (Pickard)
New ideas

An unfashionable architecture improved with:

- Use of I/O devices
- Clamping
- High input impedance*
- Transmission line integration
Challenges of HV detector design

- Withstand high input signals (self-protection)
- Avoid unnecessary division (SNR)
- Increase input voltage range \rightarrow Clamping
- Low input power \rightarrow High Z_{in}
- Design integration / low area \rightarrow T-line integ.

I/O device

T-line integ.
Linearity & Protection: I/O Devices

• No gain required $\Rightarrow f > f_T$
 – Pulsed large signal operation
 – Higher input voltage swing (breakdown voltage)
 • Lower voltage division at the input \Rightarrow better SNR
 • Higher linear operation range ($V_{DD}-V_{th}$ \Rightarrow)
Clamping

- V_{pp} swing $<$ breakdown voltage
- Information in upper half wave

Reduce swing to upper half wave

Z_{in} dominated by C_b & C_u
Design Integration

- Transmission line
 - capacitive voltage divider for coupling
- Below GND plane
 - area efficient
 - ground shield helps in low-pass filtering
- Only RF node:
 - gate of M_{det}
Block diagram

- Rectifier: M_{det}
- Attenuator: C_u & C_b
- Integrator: C_L
- Pull-down: I_b
- Clamping: M_{clamp}
- Integrated into a t-line
Schematic

One input cascode biasing
Sets clamping threshold

RF path
RF → Bias isolation

<table>
<thead>
<tr>
<th>nf</th>
<th>Wf</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{det}</td>
<td>5</td>
<td>450</td>
</tr>
<tr>
<td>M_{clamp}</td>
<td>2</td>
<td>450</td>
</tr>
<tr>
<td>M_{bias}</td>
<td>2</td>
<td>450</td>
</tr>
<tr>
<td>M_{1-4}</td>
<td>4</td>
<td>300</td>
</tr>
<tr>
<td>M_{5-8}</td>
<td>4</td>
<td>300</td>
</tr>
<tr>
<td>M_{11-13}</td>
<td>2</td>
<td>600</td>
</tr>
<tr>
<td>M_{14-16}</td>
<td>2</td>
<td>600</td>
</tr>
</tbody>
</table>
Measurement: “DC” characteristic

• Average output as a function of input power
Measurement: demodulation bandwidth

- 10 MHz bandwidth
Comparison

<table>
<thead>
<tr>
<th>node</th>
<th>f<sub>c</sub> [GHz]</th>
<th>V<sub>in_max</sub> [V]</th>
<th>BW [MHz]</th>
<th>P<sub>DC</sub> [mW]</th>
<th>DR [dB]</th>
<th>area [µm<sup>2</sup>]</th>
<th>arch</th>
</tr>
</thead>
<tbody>
<tr>
<td>[3]</td>
<td>28</td>
<td>1</td>
<td>—</td>
<td>5.8</td>
<td>12<sup>†</sup></td>
<td>150000</td>
<td>CS</td>
</tr>
<tr>
<td>[17]</td>
<td>130</td>
<td>0.6</td>
<td>16</td>
<td>35.2</td>
<td>13<sup>†</sup></td>
<td>750000$^<$</td>
<td>CS</td>
</tr>
<tr>
<td>[4]</td>
<td>130</td>
<td>2</td>
<td>190</td>
<td>25</td>
<td>25.3</td>
<td>540000$^<$</td>
<td>CB</td>
</tr>
<tr>
<td>[1]</td>
<td>90</td>
<td>0.32</td>
<td>10</td>
<td>—</td>
<td>30</td>
<td>—</td>
<td>CB</td>
</tr>
<tr>
<td>[18]</td>
<td>90</td>
<td>0.32</td>
<td>—</td>
<td>20</td>
<td>10<sup>†</sup></td>
<td>13000</td>
<td>CS</td>
</tr>
<tr>
<td>This</td>
<td>22<sup>‡</sup></td>
<td>65<sup>*</sup></td>
<td>6</td>
<td>10</td>
<td>0.006</td>
<td>25.2</td>
<td>0 (234)</td>
</tr>
</tbody>
</table>

[†] for one detector cell of the cascade;
[‡]L_{min}=150 nm IO transistors were used;
[*]limited by instrumentation;
[$]including test pads;
DR: dynamic range; CS, CG, CD: common source, gate and drain
P_{DC}: DC power consumption; f_c: maximum measured carrier frequency
Conclusion

• High voltage, low-power mm-wave detector was presented
• Diode-based peak detection revisited
• Input voltage range was extended with
 – High voltage I/O devices, working above their f_T: $\sim 3x$
 – Clamping: $\sim 2x$
• Zero area by direct transmission line integration
 – Input divider adjustable for the voltage swing
Zoltán Tibenszky

Chair of Circuit Design and Network Theory

zoltan.tibenszky@tu-dresden.de
zoltan.tibenszky.hu@ieee.org

https://tu-dresden.de/ing/elektrotechnik/iee/ccn

+49-351-463-33318
Appendice
References

Measurement Setup
BW Measurement Principle

• Similar to travelling and standing wave composition
• Waves in opposite direction with slightly different frequency
 → Travelling wave + a slowly changing “standing” wave
• Measuring at one point the “standing” component is a sinusoid as well with the difference frequency
• The peak detectors have been integrated into a transmission line where wave can travel
S-parameters

![Diagram of a circuit](image)

Graphs showing S-parameters S_{11} and S_{21} vs. Frequency.
Dynamic range extension by cascading

- By using attenuation or gain blocks
Sim: waveforms during clamping

- 6V input amplitude