Compact Bandpass Filter with Wide Stopband and Low Radiation Loss Using Substrate Integrated Defected Ground Structure

Deshan Tang, Changxuan Han, Zhixian Deng, Huizhen Jenny Qian, and Xun Luo
Center for Integrated Circuits, UESTC, Chengdu 611731, China
Outline

• Motivation & Introduction & Challenges
• Substrate Integrated DGS Filter
 – Substrate integrated DGS cell
 – Filter design using substrate integrated DGS cell
 – Radiation
• Experimental Results & Comparison
• Conclusion
• Acknowledgement
Motivation & Introduction & Challenges

• Motivation
 – Future wireless system
 • Implement with high integration level
 • Cancel interference from different devices
 • Simplify the wireless system
Motivation & Introduction & Challenges

• Air-Filled SIW Bandpass Filter
 – High passband selectivity
 – Low insertion loss and low radiation loss
 – Narrow stopband bandwidth

Motivation & Introduction & Challenges

- Bandpass Filter Using Stepped-Impedance Resonators
 - Wide stopband to $10.6f_0$ with the rejection of -23.7 dB
 - Good passband selectivity
 - High radiation and insertion loss

Motivation & Introduction & Challenges

• Bandpass Filter Using Hybrid Microstrip T-Stub/DGS Cell
 – Wide stopband to $12.1f_0$ with the rejection of -30.1 dB
 – Extra requirement for packaging
 – High radiation loss

Motivation & Introduction & Challenges

- Challenges

- Low insertion loss
- Compact size
- Wide stopband
- Low radiation loss
- High selectivity
Substrate Integrated DGS Filter

- Configuration of Substrate Integrated DGS Filter
 - Layer introduction
 - Top layer: microstrip line and metal-vias
 - Middle layer: ground I with DGSs
 - Bottom layer: ground II serves as the surrounding ground
Substrate Integrated DGS Filter

- Configuration of Substrate Integrated DGS Filter
 - Microstrip feed-lines
 - Substrate integrated DGS cell
 - DGS (Middle layer)
 - Surrounding ground (Bottom layer)
 - Surrounding metal-vias (Though 3 layers)
Substrate Integrated DGS Filter

- SIDGS Cell
 - Resonance
 - Resonances of the two separate resonators and the cell
Substrate Integrated DGS Filter

- SIDGS Cell
 - Stopband frequency response in two cases

A strong-coupled feed-line with a patch (Case B) enhances the harmonic suppression
Substrate Integrated DGS Filter

- SIDGS Cell
 - Enhanced slow-wave effect to extend stopband bandwidth

![Diagram showing frequency response and regions](image)

- Reg. I: Strong effective capacitance
- Reg. II: Strong effective inductance

Enhanced slow-wave effect
Substrate Integrated DGS Filter

• Filter Design
 – Coupling-node diagram of the proposed BPF
Substrate Integrated DGS Filter

• Filter Design

– The extraction of the couplings of the main paths

\[k_{12} \quad \downarrow \quad k_{34} \quad \downarrow \]

\[w_4 \quad \uparrow \quad w_6 \quad \uparrow \quad l_t \quad \uparrow \quad Q \quad \downarrow \]
Substrate Integrated DGS Filter

- Radiation
 - Simulated radiation loss under the case of lossless substrate and metal
 - The surrounding ground and metal-via minimize the radiation level

\[R_r = 1 - |S_{11}|^2 - |S_{21}|^2 \]
Photograph – Constructed on an RO4003C dielectric substrate with $\varepsilon_r = 3.55$ and thickness of $h_1 = 0.203\text{ mm}$, $h_2 = 0.303\text{ mm}$.

– Core size is 12.2 mm \times 12.3 mm ($0.16\ \lambda_g \times 0.16\ \lambda_g$).
Experimental Results & Comparison

- Experimental result
- Center frequency: 2.4 GHz
- 3-dB FBW: 24.6%
- Minimum insertion loss: 1.66 dB
- Stopband rejection: >29 dB up to 19.3 GHz
- Radiation Loss: <6% up to 19 GHz
- Total loss (including radiation, metal, and substrate loss): <30% up to 19 GHz
Experimental Results & Comparison

- Comparison

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>SIW</td>
<td>Microstrip</td>
<td>DGS</td>
<td>SIDGS</td>
</tr>
<tr>
<td>f_0 (GHz)</td>
<td>4.83</td>
<td>1.5</td>
<td>2.48</td>
<td>2.4</td>
</tr>
<tr>
<td>Insertion Loss (dB)</td>
<td>1.2</td>
<td>2.52</td>
<td>1.081</td>
<td>1.66</td>
</tr>
<tr>
<td>FBW (%)</td>
<td>1.4</td>
<td>8.9</td>
<td>10.8</td>
<td>24.6</td>
</tr>
<tr>
<td>Stopband Rejection</td>
<td>>15 dB up to 1.4f_0</td>
<td>>23.7 dB up to 10.6f_0</td>
<td>>30 dB up to 12f_0</td>
<td>>29 dB up to 8f_0</td>
</tr>
<tr>
<td>Radiation Loss†</td>
<td>Low</td>
<td>High</td>
<td>30% at 19 GHz</td>
<td><6% to 19 GHz</td>
</tr>
<tr>
<td>Peak Total Loss*</td>
<td>≈37%** at 6.25 GHz</td>
<td>≈98%** at 4.1 GHz</td>
<td>≈60%** at 19 GHz</td>
<td>30% at 19 GHz</td>
</tr>
<tr>
<td>Total Loss <30%</td>
<td>Up to 6.1 GHz**</td>
<td>Up to 4 GHz**</td>
<td>Up to 14 GHz**</td>
<td>Up to 19 GHz</td>
</tr>
<tr>
<td>Core Size</td>
<td>1000 mm2</td>
<td>0.0192 (μm^2)</td>
<td>0.1122 (μm^2)</td>
<td>0.0256 (μm^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>777 mm2</td>
<td>847 mm2</td>
<td>150 mm2</td>
</tr>
</tbody>
</table>

†: Calculated radiation loss under case of lossless substrate and metal.
*: Including radiation, metal, and substrate loss.
**: Estimated from the paper.
Conclusion

• Substrate integrated defected ground structure is firstly introduced for a wide stopband characteristic and low radiation loss.
• A filter is designed using SIDGS cells inherits the merits of DGS including the wide upper stopband with a compact size. Moreover, it exhibits a strong advantage in the suppression of radiation.
• With such good performance and flexibility of integration, the miniaturized SIDGS cells and BPF are attractive for the practical applications.
ACKNOWLEDGMENT

• This research is supported by National Natural Science Foundation of China (NSFC) under Grant 61934001 and Grant 61904025.
Thank you for your attention!