WE3E-3

Fully-Reconfigurable Non-Reciprocal Bandpass Filters

Dakotah Simpson¹ and Dimitra Psychogiou¹

¹Department of Electrical, Computer, and Energy Engineering, University of Colorado at Boulder, CO, USA

*This work has been supported in part by the National Science Foundation under Grant ECCS-1731956 and ECCS-1941315
Introduction: Non-reciprocity

Non-reciprocal devices: *key enabling elements of various communication & radar systems*

I. Tx/Rx separation in full duplex

II. Reflection cancellation

III. High-power protection
Introduction: Research goals

Conventional non-reciprocal devices:
- Break reciprocity: bias a ferromagnetic material
- Cannot be integrated with ICs, MMICs

Bulky: external magnetic biasing

Example RF front-end chain: need for isolators & filters

Goal: 2-stage miniaturization
- Magnet-less non-reciprocity
- Filter/isolator co-design
Introduction: State of Art - Circulators

Angular momentum biasing [1]
- Small size
- Can be integrated
- Filtering
- High IL
- Low RL
- Strong IM products

Transistor-based stages [2]
- Small size
- Can be integrated
- Low RL
- Strong nonlinearity
Introduction: State of Art - Filters

3rd Order BPF [3]

No tuning
Low selectivity (no TZs)

3rd Order BPF [4]

Only tunable in freq.
Low selectivity (no TZs)
Theoretical Foundations: Concept

Coupling-routing diagram

- Multi-resonant cell
 - 1 pole and 2 TZs

4 resonators modulated in time
- \(f_M \) – frequency of modulation signal (<< \(f_{RF} \))
- \(\phi \) – phase of modulation signal
- Resonators must be modulated out of phase

Conceptual power transmission

- \(f_0 \) and BW
- Modulating signals
- VDC
- \(S=1, 2 \)
- |S11|, |S21|, |S12|
- Amplitude (dB)
- TZ1, TZ2, P1-3
- Voltage
- \(2^*\Delta \Phi \), \(\Delta \Phi \), 0°
Theoretical Foundations: Schematic

- Multi-resonant cell: 2 series LC resonators
- 2 parallel LC resonators
- Capacitive coupling
- Resonator capacitors are modulated

DC block
Varactor diodes
Bias networks
Theoretical Foundations: Schematic

\[D_v = \text{Skyworks SMV1413} \]
\[C_{12} = C_{67} = 4.03 \, \text{pF} \]
\[C_{23} = C_{36} = 4.47 \, \text{pF} \]
\[L_P = 20.32 \, \text{nH} \]
\[L_N = 29.60 \, \text{nH} \]
\[L_{Z1} = 59.85 \, \text{nH} \]
\[L_{Z2} = 35.33 \, \text{nH} \]
\[V_{DC} = 0.56 \, \text{V} \]
Theoretical Foundations: Modulation

Parametric studies - f_M

- $f_M = 10$ MHz – Low isolation
- $f_M = 14.9$ MHz – Maximum isolation
- $f_M = 20$ MHz – Low isolation
Theoretical Foundations: Modulation

Parametric studies - $\Delta \Phi$

$\Delta \Phi = 47^\circ$ – High IL, asymmetric response
$\Delta \Phi = 67^\circ$ – Low IL, symmetric response
$\Delta \Phi = 87^\circ$ – Asymmetric response
Theoretical Foundations: Modulation

Parametric studies - V_M

$V_{M,P} = 420 \text{ mV}_{PP}$
$V_{M,Z1} = 180 \text{ mV}_{PP}$
$V_{M,Z2} = 120 \text{ mV}_{PP}$

$0.5V_M$ – Low isolation
V_M – *High isolation, Low IL*
$1.2V_M$ – High IL
Theoretical Foundations: Modulation

Parametric studies – D_V loss

Varactor introduces \sim0.5 dB loss.

Remaining loss (\sim1 dB) result of lost power to IM products.
Experimental Validation: Prototype

-Filter prototype-

-Experimental setup-
Experimental Validation: Sim vs Meas

- Measurements -

Amplitude (dB)
Frequency (MHz)

\[|S_{11}|, |S_{21}|, |S_{12}| \]

- Simulated
- Measured

- Measurements -

- Measured:
 - \(f_{\text{cen}} \): 300.6 MHz
 - \(\text{BW} \): 25.8 MHz (8.6%)
 - Minimum IL: 2.5 dB
 - Maximum isolation: 23.8 dB
Experimental Validation: Tuning

- Bandwidth tuning -

Switched off

BW: 15 – 41.5 MHz (2.77:1)

- Frequency tuning -

Freq.: 270 – 310 MHz (1.15:1)
Experimental Validation: Comparison

<table>
<thead>
<tr>
<th>Ref.</th>
<th>f_{cen} (MHz)</th>
<th>BW (MHz)</th>
<th>IL (dB)</th>
<th>Roll-off (dB/oct)</th>
<th>IS (dB)</th>
<th>f_{cen} tuning</th>
<th>BW tuning</th>
<th>Intrinsic switching</th>
</tr>
</thead>
<tbody>
<tr>
<td>[3]</td>
<td>187</td>
<td>33</td>
<td>1.5</td>
<td>90</td>
<td>23</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>[4]</td>
<td>136-163</td>
<td>27.5</td>
<td>3.7-4.1</td>
<td>120</td>
<td>52.8</td>
<td>Yes (1.2:1)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>[5]</td>
<td>1000</td>
<td>65</td>
<td>5.5</td>
<td>160</td>
<td>11.7</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>This work</td>
<td>270-310</td>
<td>15-41.5</td>
<td>1.7-4.3</td>
<td>360</td>
<td>30.9</td>
<td>Yes (1.15:1)</td>
<td>Yes (2.77:1)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- ✓ Multiple levels of tuning
- ✓ Highest selectivity in forward direction
- ✓ Low IL
Conclusion

Fully-reconfigurable non-reciprocal bandpass filters:

– *Magnet-less non-reciprocity!*

– *Filter/isolator co-design*

– *Non-reciprocal behavior ➔* modulating resonators with progressively shifted AC signals

– *Three-pole, two-TZ prototype ➔* 1.15:1 frequency tuning, 2.77:1 BW tuning, intrinsic switching, low IL, high selectivity
Thank you!

Contact: Dakotah.Simpson@colorado.edu
References

