L-Band Floating-Ground RF Power Amplifier for Reverse-Type Envelope Tracking Systems

S. Paul, W. Heinrich, O. Bengtsson

Ferdinand-Braun-Institut (FBH), Berlin, Germany
Outline

• Motivation
• Floating-Ground Transistor
• Amplifier Design
• Amplifier Testing
• Supply Modulation
• Conclusions & Outlook
Motivation: Efficiency Enhancement

Classical envelope tracking (ET) topology

• RF power amplifier (RF PA)
 – Fixed, common ground (GND)
 – High-voltage supply can be modulated

• Envelope amplifier (EA, e.g. buck converter)
 – Modulation of RF PA supply voltage
 – Fast switching for high instantaneous bandwidth (IBW)
 – Feasible with GaN-HEMT-based switch
 • Fast, but only n-type devices
 • Isolated switch driver
 • Bandwidth reduction due to parasitic capacitances!

Diagram illustrating the classical envelope tracking topology with an envelope amplifier (EA) modulating the RF power amplifier (RF PA).
Motivation: Efficiency & Bandwidth

Alternative ET topology*

- **EA**
 - Reverse-topology buck converter
 - Modulation of RF PA DC & LF GND
 - RF power GaN-HEMT for fast switching
 - GND-referenced switch control (no galvanic isolation!)
 - Bandwidth enhancement! 😊

- **RF PA**
 - Fixed high-voltage supply
 - Challenge: ground separation
 - Fixed RF GND
 - “Floating” DC & LF GND 😞

Research project funded by ESA-ESTEC (NPI, “Improved Envelope Tracking Systems Based on VHF Switching Converter and RF Amplifier”)
Pre-Work: Floating-Ground Transistor

• Core element of floating-GND RF PA*
• Package: modified 2-lead Kyocera RF power package (input lead, RF output lead and DC & LF GND lead)
• Transistor without via hole connection to backside
• RF bypass to system GND
 – single-layer capacitor C_{GND} with SRF slightly above pass-band frequency

Amplifier Design (I)

Overview

• L-Band (around 1.5 GHz)
• Hybrid design based on load-pull measurements and simulations
 – PCB
 • 20 mil Rogers 4003C
 – Transistor
 • FBH RF power GaN-HEMT (16 mm gate width, 0.5 um gate length)
 – C_GND
 • 330 pF SLC
Amplifier Design (II)

Input network

• Stabilization
 – Account for influence of floating GND!
 – Different measures for in- and out-of-band stability (Γ_S reduction)
 • In-band: $C_{RF} + R_{Stab,IN}$
 • Out-of-band: $R_{Stab,OUT}$
 • Challenge: LF-RF transition region

• Matching
 – To $Z_{IN}^* \approx 4 \, \Omega$ of floating-GND transistor
 – TL_{IN2}: dimensions determined by lead dimensions
 – Impedance shift due to stability network
 – TL_{IN1}: transformation to 50 Ω
Amplifier Design (III)

Output network

- Matching based on load-pull
 - Simulations and measurements
 - Trade-off: power versus efficiency
 - Target impedance $Z_L \approx (5+j\cdot2) \, \Omega$

- Practical realization
 - $T_{L_{OUT1}}$: dimensions determined by lead dimensions
 - C_{Match}: compensation of reactive part
 - $T_{L_{OUT2}}$: $\lambda/4$ transformation to 50 Ω
Drain & source biasing networks

- $I_{\text{DC+LF}}$ through drain and DC&LF source terminals
 - Wideband bias paths required
- RF isolation
 - $\lambda/4$ stubs, short-circuited by capacitors C_{Stub}
- Main bandwidth limitation: transistor-internal C_{GND}
Amplifier Design (V)

Gate biasing network

- Variation of the gate potential according to the modulation of the source potential
- Low-pass filter \((C_{\text{Filter,GS}})\) placed between gate and source paths
- RF isolation: \(L_{\text{Feed}}\)
- Improvement of LF stability: \(R_{\text{Feed}}\)
- External galvanically isolated gate supply to apply constant \(V_{\text{GS}}\)
Amplifier Testing (I)

LF Paths

- Cold 3-port S-parameter measurements at external V_{Gate}, V_{Drain}, V_{Source} terminals
- Re-simulation in ADS (AC)
- Frequency responses (assumption: 20 Ω load, complies to average load formed by RF PA)
- Tight wideband coupling up to about 80 MHz
S-parameters (RF path)

- Operating conditions
 - Biasing: low class AB
 - $V_{DS} = [10 \ldots 40\,\text{V}]$, $V_S = [0\,\text{V}, 20\,\text{V}]$
 - Frequency range: $[10\,\text{MHz} \ldots 2.5\,\text{GHz}]$

- Fairly poor input matching and only conditional stability
 - $|S_{11}| \approx [-7\,\text{dB} \ldots -6\,\text{dB}] @ 1.4\,\text{GHz}$
 - $|S_{11}| > 0\,\text{dB} @$ approx. $500\,\text{MHz}$ for $30\,\text{V}$ & $40\,\text{V}$

- High gain, increase with V_{DS}
 - $|S_{21}| \approx 10\,\text{dB} @ 1.1\,\text{GHz}$
 - $|S_{21}| > 16\,\text{dB} @ 1.3\,\text{GHz}$

- Fairly good output matching @ $[1.2\,\text{GHz} \ldots 2.2\,\text{GHz}]$
 - $|S_{22}| < -10\,\text{dB} @ V_{DS} = [30\,\text{V}, 40\,\text{V}]$
 - $|S_{22}| \approx [-8\,\text{dB} \ldots -5\,\text{dB}] @ V_{DS} = 10\,\text{V}$

- Results for $20\,\text{V}$ offset: almost identical
Amplifier Testing (III)

Large signal operation (freq.)

- Operating conditions
 - $V_{DS} = 40$ V, $V_S = 0$ V
 - Frequency range: [1 GHz … 2 GHz]
 - Different available source power (P_{avs}) levels
- $P_{avs} = 10$ dBm (low power)
 - good agreement to the S parameter tests
- Saturated P_{out} (gate starts to draw current)
 - $P_{out} = [46.6$ dBm … 47.4 dBm]
 (maximum @ 1.3 GHz)
 - Gain ≈ 10.5 dB @ 1.3 GHz & 7.5 dB @ 1.6 GHz
Amplifier Testing (IV)

Large signal operation (power)

- **Operating conditions**
 - $V_{DS} = [30 \text{ V, } 40 \text{ V}], V_S = 0 \text{ V}$
 - Frequencies: 1.3 GHz, 1.45 GHz, 1.6 GHz
 - P_{avS} range: [10 dBm ... max]

- **Gain**
 - Reduction over the band
 - 1 dB gain difference for the voltages

- **Power-added efficiency (PAE)**
 - Reduction for increasing frequencies
 - Max(PAE) > 57% @ 1.3 GHz & 30 V
 - Mismatch @ 1.3 GHz & 1.45 GHz: PAE(30 V) > PAE(40 V)
Supply Modulation

Back-off efficiency enhancement

• Max. efficiency improvement @ 1.3 GHz
 – 12%-pt. @ 3 dB OPB (V_{DS} reduced to 30 V)
• Clear improvement at all frequencies
 – Frequency-dependent
 – Influence of RF PA matching
• Good ET candidate
Conclusions & Outlook

Conclusions

• First-ever shown floating-GND RF PA with packaged floating-GND RF power GaN-HEMT
• Good performance without any tendency to oscillate during measurements
 – Verified source voltage offset performance
 – Excellent power performance: 55 W max(P_{out}), 57% max(PAE) @ 1.3 GHz
 – Large possible LF bandwidth: 80 MHz
• Excellent back-off efficiency improvement (12%-pt. @ 3 dB OPB)
• Novel 4-terminal floating ground transistor but textbook design process

Outlook

• Concept verification in highly efficient and wideband reverse-type ET systems for L, C, and S-band
Acknowledgment

This work was partly supported by

• ESA-ESTEC within the NPI “Improved Envelope Tracking Systems Based on VHF Switching Converter and RF Amplifier”

• The German BMBF within the Research Fab Microelectronics Germany (FMD) under ref. 16FMD02

Thank you!
Contact Information

Contact information for follow-up questions

Sophie Paul
RF Power Lab
Ferdinand-Braun-Institut
Leibniz-Institut für Höchstfrequenztechnik

Email: sophie.paul@fbh-berlin.de
www.fbh-berlin.de