Abstract—This paper presents a G-band quadrature voltage-controlled oscillator (QVCO) enabled by a superharmonic injection technique. This technique ensures differential phases at the common mode tail current source nodes of two differential oscillators, which are then enforced to generate quadrature outputs. It achieves a maximum output power of -1.54 dBm with the efficiency of 3.2% and the tuning range (TR) from 149.3 GHz to 152.4 GHz. The measured phase noise (PN) is -91.9 dBc/Hz at 1 MHz offset. The IQ outputs are down-converted by an on-chip mixer for phase and amplitude accuracy measurement. The measured I/Q phase mismatch is less than 1.5° and amplitude mismatch of less than 0.33 dB over the operating frequency range. The QVCO is implemented in a 28 nm CMOS process, occupying 0.028 mm² chip area.

Keywords—Quadrature voltage-controlled oscillator (QVCO), Self-injection locking, G-band.

I. INTRODUCTION

Mm-waves and sub-THz bands have been attracting increasing interests over the decade in a variety of applications, such as wideband communications, sensing and imaging. To boost communication data rates or extract signal phases, quadrature local oscillator is an essential component to enable high order modulation schemes and signal phase processing [1]. Quadrature signal generation in the mm-wave and sub-THz frequency range is challenging through conventional techniques due to the introduced extra parasitic capacitance by the coupling devices. The method of using a tripler to generate 120 GHz quadrature LOs from 40 GHz quadrature inputs is a traditional way [2]. However, it introduces power-consuming components such as triplers and buffers. Another approach is to couple two oscillators using active or passive networks for quadrature generation. However, this structure has its own challenges. The passive coupling networks employ a phase shifter along the coupling path, and the phase accuracy is hard to guarantee due to its highly frequency dependent resonant networks [3][4]. Active coupling by utilizing transistors adds more power consumption and noise and faces design trade-off between phase accuracy and phase noise (PN) performance in a quadrature oscillator [5]. Superharmonic coupling oscillation is an attractive technique [6][7]. It uses antiphase signals to lock the second harmonics of the two oscillators and enforcing fundamental frequency signals in quadrature phase relation without hurting PN, phase accuracy and TR. However, it is challenging to directly apply this idea to the frequency beyond one hundred GHz due to the difficulties of the generation and injection of 2nd order harmonics.

This paper proposes a full-integrated superharmonic inject-
operation by the bottom oscillator at \(2f_0\). To achieve that, the injection power needs to be strong enough and lock range needs to be sufficiently wide to cover the operating frequency.

Fig. 2 (a) depicts the equivalent injection-lock analysis model. When an injection signal \((I_{inj}, \omega_{inj})\) is added, it is required to satisfy the phasor relationship with \(I_{osc}\) and \(I_T\), as shown in Fig. 2 (b) [8]. The angle \(\Phi_0\) between \(I_{osc}\) and resultant current \(I_T\), and \(\Phi\) between \(I_{osc}\) and \(I_{inj}\) satisfy:

\[
\sin \Phi_0 = \frac{I_{inj}}{I_T} \sin \Phi = \frac{I_{inj} \sin h}{I_{inj} \sin h}
\]

At the edge of the lock condition, as shown in Fig. 2 (c),

\[
\tan \Phi_0 = \frac{2Q}{\omega_p} (\omega_p - \omega_{inj}) = \frac{I_{inj}}{I_T}
\]

Where \(Q\) is the tank quality factor and \(\omega_p\) is the resonant frequency of \(LC\) tank. Therefore, the lock range \(\pm \omega_L\) is determined as:

\[
\omega_L = \omega_p - \omega_{inj} = \frac{I_{inj} \omega_p}{I_T} 2Q
\]

when \(I_{inj} \ll I_{osc}\).

\[
\omega_L \approx \frac{I_{inj} \omega_p}{I_{osc}} 2Q
\]

Lock range is inversely proportional to the quality factor \(Q\), but lowering \(Q\) degrades the oscillation output power and efficiency, which is not a good trade off in mm-wave/sub-THz design. As a result, boost the injection signal strength is the natural way to increase the lock range.

However, there are challenges even to start the oscillation at such high frequency, not even mention at the 2nd harmonic. First, the device transconductance \(g_m\) is extremely low at the frequency close to \(f_r\). Second, the impedance looking into the common mode tail current nodes are relatively low, which drops the equivalent parallel resistance loading to the bottom oscillator to challenge the oscillation condition. To overcome the challenges, a transformer (k1) is inserted between the top and bottom oscillators. First, it supports independent supply and bias of each oscillator to maximize the headroom and transistors’ \(g_m\) so that it can satisfy the oscillation condition. Second, by adjusting the transformer parameters, including turn ratios and self-inductance etc., the optimum loading can be achieved to the bottom oscillator to increase the signal power and efficiency.

The top transformers (k2) is designed to match to the optimum impedance faced by the core cross-coupled transistor pair. At high frequencies, transformer on the top metal is the best option due to its relatively high \(Q\), which determines the oscillator signal power and efficiency. Besides, transformer-based impedance matching networks provide flexible structures for required impedance conversion ratio, differential interface suitable for cross-coupled transistor pair, and virtual ground in the center readily for ground or DC power connection.

III. Circuit Design

A. Transformer based cross-coupled oscillator

Fig. 3 (a) depicts a cross-coupled oscillator and its equivalent circuit model, in which \(R_T\) is internal equivalent resistance, \(C_T\) is total node capacitance, \(R_p\) and \(L_p\) construct the load \(Z_{L}\). According to the maximum power transfer theorem, when \(R_p = R_T\), the maximum output power is delivered to the load. The other criteria that an oscillator must satisfy is oscillation condition, which is

\[
\frac{1}{2} \frac{1}{R_T} + \frac{1}{R_p} < 0
\]

Therefore,

\[
R_p > \frac{1}{2} \frac{1}{R_T}
\]

In the real case where the circuit is terminated with \(Z_0\), a transformer is employed to realize the impedance matching. Fig. 2(c) shows a transformer model with a series primary coil and a parallel second coil for analysis. Based on the parameters and definitions of the transformer, the input impedance can be calculated.

\[
Z_{load} = \frac{\phi^2}{R_T^2} \text{Re}(Z_0/sL_{sec}) + j \left[\frac{\phi^2}{R_T^2} \text{Im}(Z_0/sL_{sec}) + \omega L_{pri} \right]
\]

Where \(L_{pri}\) is the inductance of primary coil; \(L_{sec}\) is the inductance of secondary coil; \(M\) is the mutual inductance; \(K\) is the coupling coefficient; \(T\) is turn ratio of the transformer and \(Z_{load}\) is the input impedance looking into the primary coil. The equivalent resistance, \(R_p\), parallel with the cross-coupled transistors at the resonant frequency \(\omega_r\) is obtained as:

\[
R_p = \frac{(\omega_r L)^2}{\text{Re}(Z_{in})}
\]
B. Passive Design and Integration

Another key aspect of high-frequency LC oscillator is the design and layout of transformers, as shown in Fig. 4. Different transformers play different roles. As discussed in section II, the top transformer \(k_2 \) is used to obtain maximum output power and DC-to-RF efficiency [9]. The transformers are drawn as symmetric as possible to minimize common mode signal leakage to common source node to avoid disturbing the superharmonic signal injection operation. The bottom transformer is designed to push the oscillation frequency beyond 300 GHz and enlarge the injection signal level. As \(g_m \) is extremely small at high frequency, the priority is to satisfy the oscillation condition by boosting the parallel resistance presenting to the cross-coupled transistor pair without introducing extra inductance, which drops the operating frequency. Transformers at high frequencies are not easy to achieve large turn ratio due to the dimension constraint. The input impedance \(Z_{in} \) looking into the common-mode source nodes is obtained from simulation and listed in Fig. 5, and the equivalent parallel RC model is calculated as well. According to expressions (8) and (9), decreasing the coupling coefficient \(K \) is an effective way to boost \(R_p \), as the curve shows in Fig. 5.

C. Phase and amplitude mismatch test scheme

Due to the lack of ultra-wideband oscilloscope to measure I/Q signal in G-band, the on-chip down-convertors are implemented to convert to IF for I/Q signal measurements [10]. Fig. 6 shows the block diagram with I/Q double-balanced mixers and buffers implemented on-chip. Besides, an additional differential signal is generated as the LO to mix down the G-band I/Q signals. The buffers are realized with pseudo-differential neutralized source follower amplifiers, providing high input-output isolation, driving the off-chip 50 Ω for IF I/Q measurements.

IV. EXPERIMENT RESULTS

Two chips, the standalone QVCO and I/Q signal test chip, have been fabricated in TSMC 28-nm bulk CMOS technology are shown in Fig. 7.

The output power, frequency and PN of the standalone QVCO were tested with Keysight N9030A spectrum analyzer through the external G-band harmonic mixer OML M05HWD and GGB probes, as shown in Fig. 8. The spectrum analyzer was calibrated and verified by an Erickson PM4 calorimeter. The standalone QVCO occupies an active area of only 0.028 mm². It consumes 21.9 mA from a 1V supply. Oscillation frequency covers from 149.3 to 152.4 GHz by tuning the body voltage from 0 to 1V. Fig. 9 shows the spectrum, measured output power and efficiency in the whole TR. It achieves the Pw = -66.18 dBm

Table 1:

<table>
<thead>
<tr>
<th>VDD_top (V)</th>
<th>Zin/Z0 (Ω)</th>
<th>Equivalent R & C (Ω, fF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2.17 – j1.45</td>
<td>157, 2.1 fF</td>
</tr>
<tr>
<td>0.8</td>
<td>2.01 – j1.73</td>
<td>175, 2.4 fF</td>
</tr>
</tbody>
</table>

(a) (b)

Fig. 7. Die micrographs of (a) the standalone QVCO and (b) I/Q test chips.

Fig. 8. Measurement setups for output power, frequency at G-band, and phase and amplitude error at down-converted frequency.

Fig. 9. (a) Spectrum, (b) measured output power, DC-to-RF efficiency and oscillation frequency when tuning the bulk control voltage.
A comparison table with state-of-the-art QVCOs in silicon is shown in Table 1. Benefitted prototype to achieve accurate quadrature signals with phase error less than 1.5° and amplitude error less than 0.33 dB for the entire frequency tuning range from 149.3 to 152.4 GHz. Optimizing the load impedance and transformers contribute to the measured power efficiency of 3.2%, which is the highest for QVCOs in mm-Wave/sub-THz bands. The measured PN is less than -90 dBc/Hz @ 1 MHz offset. The proposed QVCO will benefit the wide deployments of mm-wave/sub-THz systems, such as high-order modulation for ultra-high data rate communications, phase extraction of imaging and sensing.

ACKNOWLEDGMENT

The authors would like to thank NSF for the financial support and TSMC for the chip fabrication.

REFERENCES

Table 1. Comparison with state-of-the-art QVCOs in mm-wave/sub-THz bands in silicon.

<table>
<thead>
<tr>
<th>Technology</th>
<th>Freq. (GHz)</th>
<th>Freq. TR (%)</th>
<th>DC Power (mW)</th>
<th>Pout (dBm)</th>
<th>Efficiency (%)</th>
<th>PN@1MHz (dBc/Hz)</th>
<th>Phase Error (°)</th>
<th>Amp. Error (dB)</th>
<th>FOM$_{dec}$ (dBc/Hz)</th>
<th>Area (mm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[4] 28 nm CMOS</td>
<td>71.4-76.1/85.6-90.7</td>
<td>9.8</td>
<td>35.6</td>
<td>N/A</td>
<td>N/A</td>
<td>-114.2/107</td>
<td>1.5</td>
<td>1</td>
<td>-165.6</td>
<td>0.031</td>
</tr>
<tr>
<td>[7] 0.35um SiGe</td>
<td>55-76.5</td>
<td>32.7</td>
<td>1000</td>
<td>10.5</td>
<td>1.05</td>
<td>-97</td>
<td>13</td>
<td>N/A</td>
<td>-173.6</td>
<td>0.25</td>
</tr>
<tr>
<td>[11] 90nm CMOS</td>
<td>49-51.4</td>
<td>4.7</td>
<td>75.4</td>
<td>-10</td>
<td>0.13</td>
<td>-103.4</td>
<td>2.5</td>
<td>0.5</td>
<td>-172.2</td>
<td>1.47</td>
</tr>
<tr>
<td>[12] 65 nm CMOS</td>
<td>85-127</td>
<td>39.4</td>
<td>45</td>
<td>-15</td>
<td>0.07</td>
<td>-105/2</td>
<td>2/0.51</td>
<td>180.9</td>
<td>-0.55</td>
<td></td>
</tr>
<tr>
<td>[13] 28 nm CMOS</td>
<td>37.5-45</td>
<td>18.2</td>
<td>8.4</td>
<td>-65</td>
<td>0</td>
<td>-94.3</td>
<td>0.48/0</td>
<td>N/A</td>
<td>-183</td>
<td>0.068</td>
</tr>
<tr>
<td>This work</td>
<td>149.3-152.4</td>
<td>3.1</td>
<td>21.9</td>
<td>-1.54</td>
<td>3.2</td>
<td>-91.9</td>
<td>1.5</td>
<td>0.33</td>
<td>-168.3</td>
<td>0.028</td>
</tr>
</tbody>
</table>

(a) FOM$_{dec}$ = PN - 20 log$_{10}$ ($\frac{F_{out}}{mW}$) + 10 log$_{10}$ ($\frac{P_{DC}}{mW}$). (b) at 10 MHz offset, (c) simulated, (d) back-calculated.

Fig. 10. Phase noise at the 152.4 GHz output.

Fig. 11. Measured quadrature signals down-converted to 3.7 GHz.