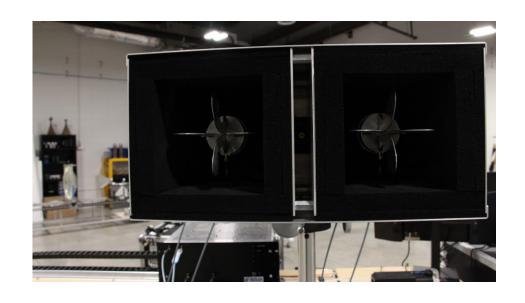


Reducing Cost & Schedule Risk Through Advanced EM Simulation: A Phased Array Radome Case Study

Dr. Daniel Faircloth CTO Nullspace, Inc.


IMS 2023 MicroApp Presentation June 15, 2023

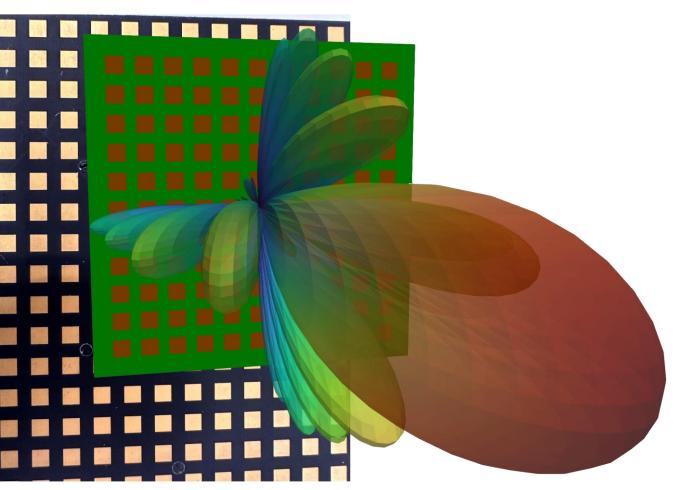
About Nullspace, Inc.

Spun out of IERUS Technologies, an established Huntsville-based defense contractor

Nullspace software validated with real-world applications and products for 10+ years

Our Products

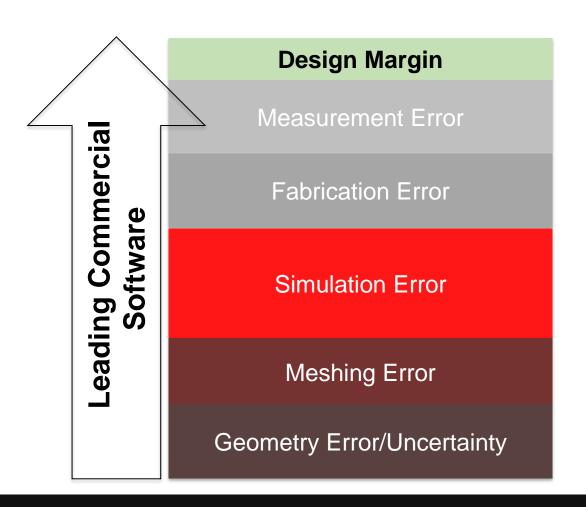
Nullspace Prep

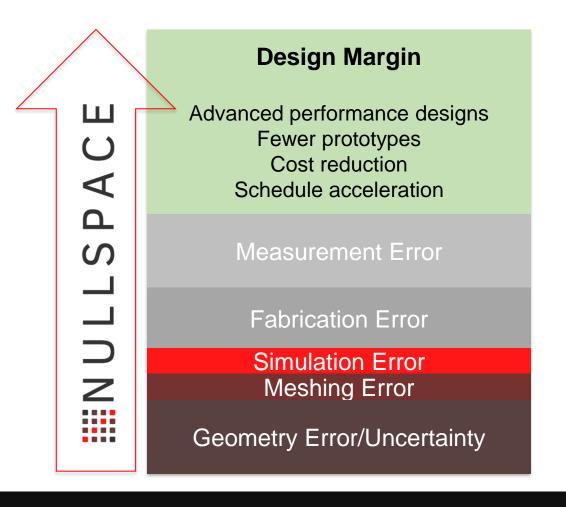

- CAD and meshing pre-processor
- User-friendly GUI
- Import/Export many formats
- Powerful Python API

Nullspace **EM**

- Fast, accurate, 3D electromagnetic simulation software
- Designed for speed and accuracy of large optimization problems
- Robust, validated solver technology

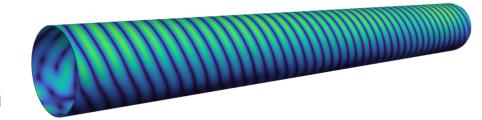
Solving Large Problems ... Accurately




- Electrically large simulations with many excitations – Phased arrays, scattering, co-site, etc.
- Available solutions are expensive and inaccurate for large problems
- With Nullspace EM, run much larger simulations accurately and efficiently

IIINULLSPACE

Why Accuracy Matters


Error build-up for a typical design process – 2-5X Error Reduction

Why Speed Matters

Actual time comparison for a challenging, large-scale EM simulation

Design Schedule Margin Post-Processing – 9 Minutes Commercial Software Simulation – 15 **HOURS** Leading Configuration – 3 Minutes CAD & Meshing – 1 Minute

Design Schedule Margin

Sophisticated optimizations
Uncertainty analysis
Reduced time to market

Post-Processing – 3 Minutes

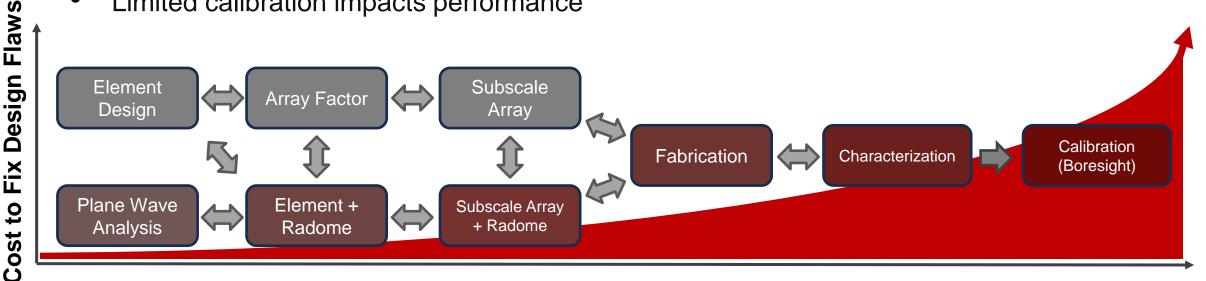
Simulation – 30 MINUTES

Configuration – 2 Minutes

CAD & Meshing – 6 Minutes

Radome Impacts on Antenna Performance

- Radomes offer environmental protection for antennas and arrays
 - Wind, precipitation, lightning, static discharge, etc.
- Tug-of-war between protection and performance
- Impact to performance must be considered but ...
 - No/Limited ability to perform detailed analysis before fabrication
 - Limitations on antenna calibration



The Radome Design Dilemma

- Disaggregated design tools introduce cost and schedule risk
- No/Limited ability to assess antenna+radome performance in simulation
- Delayed identification of design issues -> Higher cost to fix
- Limited calibration impacts performance

Time

Phased Array Example

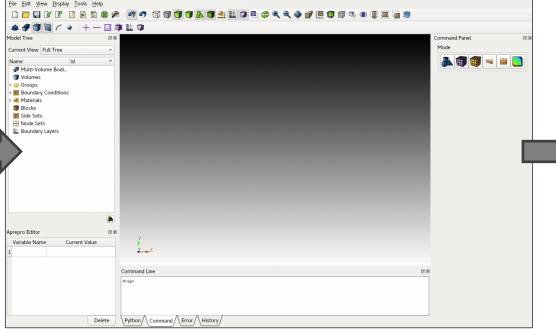
Nullspace Prep Python API

Nullspace Prep 2023.4 dipoles_full_triangular_lattice.py 🗶 <u>File Edit View Display Tools Help</u> 2 import math 3 cubit.cmd('reset') 4 cubit.cmd('view iso' 5 cubit.cmd('rotate 90 about world v') 6 cubit.cmd('rotate 90 about world x') 7 cubit.cmd('zoom reset') 10 numZ = 15 11 lam = 3e8/6e9*1000 12 L = lam*.45 13 dY = 0.25*lam 14 dZ = lam/2 15 w = 0.01*lam Multi-Volume Bodi.. Volumes Groups 16 xOffset = lam/4 17 zExtent = ((numZ+1)*dZ/2) →

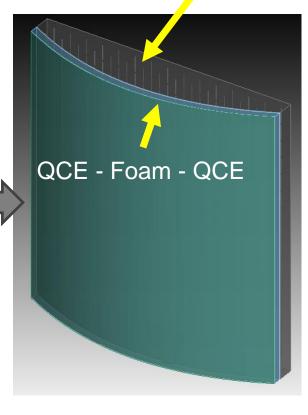
→ Boundary Conditions Materials 18 yExtent = ((numY-1)*dY/2) 19 radomeR = yExtent + dY/2 Blocks 20 radomeH = 1am*1.75 # Side Sets 20 radomet = lam*.121 21 radomet = radomeH - lam 22 radomeT = lam*.025/.0254/lam #2x QCE thickness at 6 GHz ₩ Node Sets 23 radomeSep = lam/4 24 numPoints = 51

22 cobst.cod("create surface rectangle width (w) height (L) yplane')
23 cobst.cod("results perloats.id("volume")
30 cobst.cod("split surface in volume (dipole_v) across location(-w) 0 0 locatic
31 cobst.cod("reove volume (dipole_v) z (-d2"c(num2"-1)/22")
31 cobst.cod("reove volume (dipole_v) z (-d2"c(num2"-1)/22")
32 cobst.cod("reove volume (dipole_v) z (-d2"c(num2"-1)/22")
33 cobst.cod("reove volume (dipole_v) z (-d2"c(num2"-1)/22")
34 cobst.cod("reove volume (dipole_v) z (-d2"c(num2"-1)/22")
35 cobst.cod("reove volume (dipole_v)")
36 ror 12 in range(0, num2):
37 for 12 in range(0, num2):
38 for 13 in range(0, num2):
39 for 14 range(0, num2):
40 ybs_s=d2"+12 + d2"/2
41 zbos = d2"+12 + d2"/2
42 else:

25 gpOffset = 0 26 27 # Draw the antenna lattice

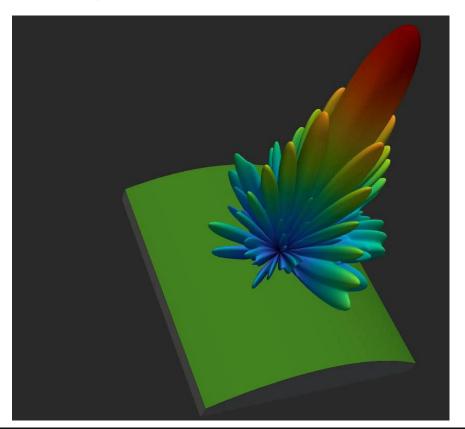

zPos = d7*17

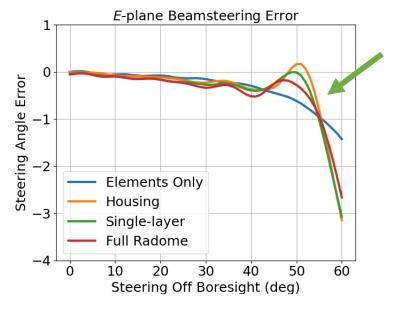
a = (xMin - b)/radomeR/radomeR

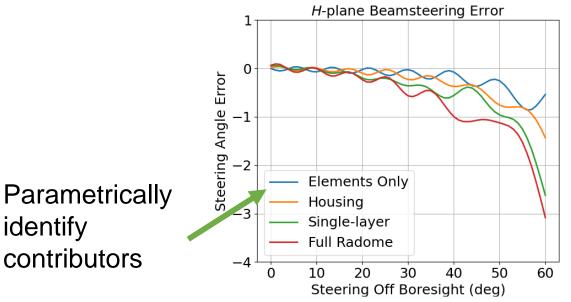

b = radomeH

45 cubit.cmdf"volume (dipole_v) copy move x 0 y (yPos) z (zPos)')
46 v_tmp = cubit.get_last_laf("volume")
47 cubit.cmdf"group "dipole" add volume (v_tmp)')
48 eTorar reduces
48 eTorar reduces
50 iPraderose = vystart/(numPoints-1)*2
52 for iP in range(0, numPoints)
53 ry = yStart + IPradradose

Parameterized model creation


30x15 Dipole Triangular Lattice




Beamsteering Error

- Before fabrication, opportunity for
 - Weights optimization
 - Uncertainty analysis
 - Simulation-based calibration

Degradation at steep angles

IIINULLSPACE

Contact Us

Come see us at Booth 2141!

Dr. Daniel Faircloth
Chief Technology Officer
daniel.faircloth@nullspaceinc.com

Dr. Masha Petrova
Chief Executive Officer
masha.petrova@nullspaceinc.com