

Improving Surface Mount Packaging Design for mmWave Devices

Kyle Chang, Applications Engineer IMS 2023

Presentation Overview

- 1. Why Package mmWave Devices?
- 2. Current Packaging Options
- 3. Challenges with High-Frequency Packaging
- 4. Improving Packaging for mmWave Applications

Presentation Overview

- 1. Why Package mmWave Devices?
- 2. Current Packaging Solutions
- 3. Challenges with High-Frequency Packaging
- 4. Improving Packaging for mmWave Applications

Why Package mmWave Devices?

Why Package mmWave Devices?

Why Package mmWave Devices?

Presentation Overview

- 1. Why Package mmWave Devices?
- 2. Current Packaging Options
- 3. Challenges with High-Frequency Packaging
- 4. Improving Packaging for mmWave Applications

Current Packaging Options

IC Packaging

Hierarchical Packaging

Current Packaging Options

Air Cavity

Plastic Over Mold

Current Packaging Options

(MM1-2567LSM)

(MM1-0832LSM)

Plastic Packaging

Ceramic Packaging

Presentation Overview

- 1. Why Package mmWave Devices?
- 2. Current Packaging Solutions
- 3. Challenges with High-Frequency Packaging
- 4. Improving Packaging for mmWave Applications

- Meeting SWaP-C demands:
 - High channel density in RF front end
 - Phased array applications
 - Large-scale production testing

- Meeting SWaP-C demands:
 - High channel density in RF front end
 - Phased array applications
 - Large-scale production testing

- Meeting SWaP-C demands:
 - High channel density in RF front end
 - Phased array applications
 - Large-scale production testing

Increased packaging parasitics

Packaging co-design requirement (device dependent)

(MFBC-00016PSM)

Packaging co-design requirement (device dependent)

(HLM-40CH, HLM-40U)

Packaging co-design requirement (device dependent)

(HLM-40CH, HLM-40U, HLM-40PSM)

Presentation Overview

- 1. Why Package mmWave Devices?
- 2. Current Packaging Solutions
- 3. Challenges with High-Frequency Packaging
- 4. Improving Packaging for mmWave Applications

PCB launch parasitic compensation

Material Rogers 4003 008" ¹/₂ Oz Cu both sides.

PCB launch parasitic compensation

DFN Packaging

- Standardized package footprint
- · Wire-bonded plastic over mold

AKA-1300PSM vs ADA-1300D Performance

AKA-1300PSM vs. ADA-1300D Performance

CSP Packaging

- No wire bonds (patent pending)
- Plastic over mold

CSP1 (1.5 x 1.5mm)

CSP2 (2.5 x 2.5mm)

(HLM-40CH, HLM-40U, HLM-40PSM)

(HLM-40CH, HLM-40U, HLM-40PSM, HLM-8011CSP1)

(HLM-40CH, HLM-8011CSP1)

DFN (1.2 x 3.0mm)

CSP1 (1.5 x 1.5mm)

CSP2 (2.5 x 2.5mm)

Questions?

Want to see more?
Visit booth #1043 at IMS2023

PERFORMANCE THAT WILL BLOW YOUR MIND

THANK YOU