

A Paradigm Shift in Distributed Modular VNA Architecture That Makes Long Distance Measurement Simple and Easy

Navneet Kataria

Product Marketing Manager Benchtop products Anritsu company

June 2023

Background/Problem statement

Problem statement/Background

Cables introduce signal losses between DUT and VNA port

- Cable insertion loss (IL) reduces effective VNA measurement dynamic range
- Higher frequencies and longer lengths = higher losses
 - Typical microwave cable might have ~1 dB loss per meter at 4 GHz
 - Loss grows to ~2-4 dB per meter at 40 GHz

Cable phase uncertainty

- Small deviations in cable electrical length cause deviations in phase measurement results
- Length affected by changes in environmental temperature and cable movement

Solution to the problems

- Address cable IL and phase issues by eliminating the test port cables altogether
- Requires:
 - Portable VNA ports for easy placement at DUT eliminating long test port cables
 - Independent source and measure circuitry in each port module
 - Long distance port to port synchronization to enable vector s-parameter measurement (Phaselync™).

Anritsu Distributed VNA – The Answer

- 2-port VNA uses two ShockLine MS46131A 1-port VNAs as port modules
- 8/20/43.5 GHz models
- Supports fully reversing 2-port S-parameter measurements

A small video on how Antenna measurements are done today

OTA Chamber Setup and Measurements

Advancing beyond

Typical microwave OTA antenna test setup requires:

- High performance VNA for dynamic range and complex hardware control
- Signal generator for remote sourcing at test source antennas
 - Eliminates long cable from VNA source port with very high insertion loss
 - Requires complex triggering, reference, and measurement control
- Mixers for reference and antenna under test (AUT)
 - Down converts measurement signals to lower frequencies, lowering losses
 - Requires additional LO and IF distribution hardware for mixer control
 - High end VNA must supply LO, IF, and control signals for mixers
 - Mixers limit measurement bandwidth

ME7868A simplifies equivalent OTA antenna test setup

- VNA ports connect near or directly to test antennas
 - Full wideband measurement sweeps
 - No down conversion required
 - Eliminates cable insertion loss, full VNA SDR applies to measurement
 - Improves phase stability over temperature and movement
- Improves overall measurement uncertainty
 - Less hardware required
 - Calibration and de-embedding simplified
- Much more cost-efficient solution

Typical large OTA Chamber Setup

Large Chambers – Large Antenna – Large Payloads

Use cases and applications

- Outdoor antenna ranges use similar hardware to large OTA Antenna chambers
 - High performance VNA for dynamic range and complex hardware control
 - Signal generator for remote sourcing at test source antenna
 - Mixers and support hardware for reference and antenna under test (AUT) signal paths
 - Hardware must work over longer distances (50+ meters)
- ME7868A PhaseLync technology advantages in long distance setups
 - Ports can be setup 100 meters apart, simplifying outdoor range setups
 - Eliminate Long RF cable runs to either transmit or antenna under test
 - Improved amplitude and phase stability
 - No coupling into RF cables
 - Flexible Configurability

Aircraft cable testing

Long cables needs to be tested

- Insertion loss
- VSWR
- Time domain

Large Vehicles

Example Cable Testing on Ships with ME7868A

Shielding effectiveness/Cables of Aircraft frames

Example ME7868A Setup for Cable Testing in Aircraft

Use cases and applications

Automotive antenna testing

- Auto rotates turntable, test antenna on arched positioner enabling 3D pattern scans
- Tests include antenna gain, directivity, beamwidth, efficiency

Standard VNA setup

- Long port cables required (>~25 meters)
- Reduced measurement dynamic range due to cable insertion loss
- Cables add phase measurement uncertainty

ME7868A setup

- Ports directly interface to DUT and test antennas
- Full VNA dynamic range applied to measurement
- Less measurement uncertainty with no long cabling

Long, lossy and phase instability leading to erroneous results

Anritsu Modular distributed VNA – no long cables, direct connection with material under test

Near filed, Far Field

ME7869A

