

Dynamic height adjustment using Vector Network Analyzer based contact sensing using FormFactor WinCal XE 4.9™ and Velox 3.4 - THMA6

Gavin Fisher James Hibbert Thanks also to Pranav Shrivastava

2023 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM 11-16 JUNE CONVENTION CENTER San Diego, California

The problem – Contaminants can affect planarity

- In WinCal XE the probe geometry is set at a single reference location in terms of XYZ
- During calibration, the system steps using iss co-ordinates assuming the planarity is perfect
- Contaminants under the substrate can cause planarity to change, and results in more or less overtravel affecting probe final position at the standards away from the reference

- Augmented alignment Green lines set to be 130 um – probe geometry set to this spacing at alignment Mark A
- Stage move to location H Less skate and probes now spaced to 140 um

The problem – planarity of iss and positioner runout

- Final placement error seen here is 10 um – A combination of small positioner planarity error and iss planarity error and small X offset
- Note height of scope Z reference was changed by 16 um to get best focus

Alternative solutions to contact sensing?

- Velox supports Z profiles to the main wafer chuck but <u>doesn't do this</u> at the auxiliary chucks
- Lookup table for Z that could be applied at calibration time ,breaking into the automatic calibration routine but needs calculated initially
- Dynamic height adjustment could be done using the FindFocus algorithm and height adjusted this way but there is potential for failure with contaminants on iss itself.
- Find focus wouldn't detect probe changes or tiny positioner runout.

Contact sensing

- Very repeatable and uses the measurement system itself
- Is dynamic and reflects the height of the probe at the actual time of calibration (as probes cool the height can change)
- Can be very quick when communicating directly with the vna via tcp (as we did)
- Drawback of direct approach is a driver is needed per instrument type additional to Wincal's own
- Can be compatible with Autonomous RF setups
- Is simple probes need setup for the iss anyway....
- Delta Magnitude = ((Real_current Real_Open)^2+(Imag_current Imag_Open)^2)^0.5

Contact detection Threshold

- Steps are in 2 um here
- It takes off typically at 0.05 delta
- Here the stopping point is
 0.05 probes barely kissing pad

How does it work in general inside Python script?

This is a flowchart of the general contact sense python script logic

This script is run during the calibration process

How to make python scripts work within Wincal

- Python direct approach could use Wincal as a slave but preference is to sense in the normal cal approach
- Wincal can invoke a "sequence" during the calibration sequence
- Calibration sequence can in turn invoke a python script using DoScript command
- Each measurement can have a sequence run before and after and even use a specified report for process work

A few tricks regarding implementation

- By default Wincal will do all the movement activities prior to reaching the standard including movement to contact
- However it will not bring <u>positioners</u> to contact if they were previously at separation
- Multiple touchdowns avoided to reduce pad wear
- For this reason the ProbeSeperation sequence is done after the standard measurements
- In this case this is the second standard in the pair of reflect standards

Sequence manager being used to call Python scripts

 The set of sequences is seen in the list

System used for evaluation

- WinCalXE™ 4.9
- Velox[™] 3.4
- CM300xi ULN
- Keysight N5291A VNA
- I110-AM-GSG-100
- 104-783 ISS (deliberately contaminated or rear)
- RPP504 Motorised positioners
- Remote Author was in UK machine in Germany

Iss deliberate contamination

- Permanent Sharpie[™] marker layered over a few coats ON ISS rear face
- This created a delta of approximately 18 um from the upper edge of the iss to the lower edge
- We have have added more but this is likely to be in the level of typical "annoyance" levels of contamination which doesn't necessarily warrant remedial action

Testing methodology

- Use a script to perform calibrations at 25 locations on 104-783 upper set of loads are totally untrimmed and so excluded
- Perform calibration set with load compensation and contact correction
- Record error sets for all locations tested and photos of probe contact.
- Measure Open in air and same thru as used for the test
- Carry out calibrations on same iss and setup but only use load compensation and no contact correction
- Compare spread of error sets
- 20 um skate used to maintain standard but also to improve contact sense with 25 skate the probe doesn't quite touch standard initially

Load resistance measurement and adjustment

- ISS Map was not readily available so we needed to measure the load resistance – we used B1500 via instrument bias tees
- The ability to add sequences to calibration made direct measurement and compensation appealing
- Short was measured at .1 volts and used as offset reference.
- Load was measured a 1 volt and resistance of short subtracted
- Corrected load value is automatically applied during calibration process
- WinCalExecuteCommand("CalSetCoefficient, 1, Match from model, Reference Match, R, {}".format(rload1 corrected))

	1-P1	1-P2	2-P1	2-P2	3-P1	3-P2	4-P1	4-P2	5-P1	5-P2
D	50.16738	49.97174	50.108	49.94734	50.07572	49.92857	50.05479	49.96162	50.07692	49.96095
E	50.06263	50.02269	50.09324	49.99304	50.26224	50.25585	50.04498	49.96696	50.1972	49.96872
F	50.0823	49.92257	50.04715	49.96062	50.02146	49.92824	49.97339	49.99766	50.02857	49.93536
G	50.05876	49.96696	50.00833	49.95592	49.99709	49.92257	50.10094	49.92424	50.13753	49.93255
Н	50.08611	49.96229	50.02901	49.893	50.10251	49.92391	50.0209	49.9485	50.07824	49.93803

Scripts used

- cal repeatability with contact sense.py
- al repeatability without contact sense.py
- contact_sense.py
- ff_constants.py
- iss_load_measurement_and_setter.py
- load_snap.py
- MOVE_SCOPE_TO_RH_PROBE.py
- open_snap.py
- open_snap.py
- reset_short_resistance.py
- short_snap.py
- thru_snap.py
- vna.py

- Main script is contact_sense which either determines the required overdrive per probe set by the user from sensing or corrects the chuck and probe2 contact based on contact sensing of current standard
- VNA is crucial to communicate to the vna directly over socket
- Ff_constants are the primary control variables
- Iss Load measurement and setter measure the short resistance and if on a load measures and compensates the load and sends to WinCal XE
- Cal repeatability scripts are used to run the tests
- Reset_Short_Resistance removes the short data file to force measurement of a short rather than a load

Scripting console

- The python scripts used were run via the scripting console but other approaches could also have been used
- Console is advantageous that the command choose and Intellisense for all the Velox commands makes coding fairly straightforward

Adjusting the Cal group for measurement

- This is often done manually but there is a command to progress to next cal group
 - w.CalUseNextGoodGroupOnIss()

Error set comparison – Left graph without Z compensation

- Data shown compares location 16 thru 40 from topleft
- Much tighter grouping in the 2.5% range

Post calibration Open Magnitude Variation

Post calibration Open EVM Delta (x100)

Comparing standard in the same location with and without sensing

- Note relationship of dark leading edge of probe wrt blue lines (170 um apart)
- Tips clearly retracted from the green 130 um lines

Video of operation – video removed to fit inside 25 MB

Conclusion

- Contact Z adjustment via RF electrical sensing is a readily achievable enhancement to FormFactor probers equipped with WinCal XE 4.9 using existing software with the addition of some scripting
- Using a Z sensing approach, we can improve upon the spread of error sets for a given iss and for a given environmental instrument drift
- Dynamic measurement of load resistance and on the fly compensation can be performed for customers who also have a B1500 parametric instrument.

