

Modern 5G Millimeter Wave Antenna Array Evaluation in Near- and Far-Field Environments

Jari Vikstedt

Director – Wireless Solutions

ETS-Lindgren Inc.

jari.vikstedt@ets-lindgren.com

Edwin Mendivil

Principal RF Engineer

ETS-Lindgren Inc.

edwin.mendivil@ets-lindgren.com

Introduction

- Wireless testing has always taken some liberties to make measurements in imperfect environments (like violating the far-field rule)
- With introduction of the FR2 frequency range for the wireless devices, there was a lot of discussions whether devices need to be tested in far-field environment.
- Industry (3GPP and CTIA) elected to adopt something between the sub-par and ideal to conduct their testing
- In this study we investigated how much the results of typical FR2 devices change when testing is conducted in different environments.

Background

- Utopia
 - Pure far-field environment with no amplitude / phase taper or ripple
 - Lossless from the AUT to the receiver
 - Plenty of dynamic range to deal with changing path loss when AUT is rotated in 3-dimensionally
 - Positioner would not cause any disturbance for the measurements

Background

- Utopia = Reality
- × Pure far-field environment with no amplitude / phase taper or ripple
- Lossless from the AUT to the receiver
- Plenty of dynamic range to deal with changing path loss when AUT is rotated in 3-dimensionally
- Positioner would not cause any disturbance for the measurements

Validation

Amplitude, QoQZ

Phase Validation

©2023 ETS-LINDGREN May 8, 2023

So, what if we measure in near field?

Lot of talk about testing in near field for active devices.

- We took two distinctly different devices and measured them.
 - Active; UE measurements (range calibration in each distance)
 - CATR with 60cm QZ
 - 30cm and 50cm test distances
 - Passive; Phased Array Antenna
 - Planar near field range
 - ETS-Lindgren AMS-5703 CATR with 60cm QZ
 - 50cm test distance.

Planar NF and CATR

AMS-5703; 60cm CATR

- 60cm QZ per the 3GPP and CTIA
- Corner fed, Serrated edge reflector for excellent QZ performance
- Internal dimensions:
 - 15'-0" x 9'-0" x 8'-0" (≈ 4.6m x 2.7m x 2.4m)
- Nominal outside dimension:
 - 15'-2" x 9'-2" x 8'-6" (≈ 4.6m x 2.8m x 2.6m)

© 2023 ETS-LINDGREN May 8, 2023 12

UE Testing; TRP

Note! Different beam selected from the TX BPS for the 30cm test

UE Testing; RX BPS (no 30cm Data)

UE Testing; RX BPS (no 30cm Data)

UE Testing; RX BPS (no 30cm Data)

© 2023 ETS-LINDGREN May 8, 2023 16

Phased Antenna Array

- Antenna loaned by Dr. Rebeiz
 © Extreme Waves
- 8x8 (1/2 λ) dual polarized antennas
- Configuration for the test
 - TX mode
 - Vertical polarization
 - Single beam in principal direction
- We wanted to see the difference from FF to NF without the use of the NF-FF transformation.

Image Courtesy of https://www.extreme-waves.com

Phased Antenna Array

Phased Array Antenna

Phased Array Antenna

Other potential solutions

AMS-5700

- 2D test box
- Dual pol antenna 5-50GHz
- 1.06 m range length
- Laser alignment
- Precision Positioner
 - Power, RF, USB via slipring
- 3D upgradeable

May 8, 2023

AMS-5701

- Theta arm system on wheels
 - Theta 0-170 deg
 - Phi 0-360 deg
- Can go thru normal personnel door (comes in three pieces)
- Features
 - USB slipring on phi positioner
 - 67GHz rotary joint on phi axis
 - 6-67GHz dual polarized test antenna
 - Laser alignment system
 - DUT mount and calibration antenna w/mount

Conclusions

- Active testing in NF provide good correlation
- But are the results "good enough" for active testing?
 - This really depends on what the use case is.
 - Certainly, this is good enough for pre-compliance work.
- The test ranges, with severely reduce test distance (in NF), would not meet any of the required measurement uncertainty (MU) limits but could be potential for R&D type of testing.

THANK YOU!

Jari Vikstedt

Director – Wireless Solutions

ETS-Lindgren Inc.

jari.vikstedt@ets-lindgren.com

Edwin Mendivil

Principal RF Engineer

ETS-Lindgren Inc.

edwin.mendivil@ets-lindgren.com

BEYOND MEASURE™