

Comparison of Analytical Solutions and Numerical Optimization in Beamforming

Olli Pekonen, Jussi Rahola, Sergei Kosulnikov Optenni Ltd

Outline of this Presentation

- General Array Feeding Challenge
- Array factor vs. Full Array analysis
- Canonical (Analytical) solutions for array excitation in Optenni Lab
 - Progressive phase shift
 - Plane wave excitation
 - Maximal gain
 - Amplitude tapering schemes
- Numerical optimization in Optenni Lab
 - Breaking free from canonical excitation schemes
- Comparison of canonical and numerical solutions in terms of EIRP

General Array Feeding Challenge

- Assuming a given physical array element structure...
- challenge is to find excitation vectors (EV) + feeding & matching circuits
- EVs create the wanted radiation characteristics but also alter the matching
- Power is coupled from other ports at the same frequency -> active reflection coefficients, ARCs

Excitation Vector (part)

So the Challenge Is To Determine...

- ...EVs that create the required radiation characteristics
 - Beams / EIRP
 - Sidelobe levels
 - Nulls
 - Polarization etc etc
- ... so that the matching due to ARCs is acceptable, and
- ... and so that the power output/dynamic range of the amplifiers generating the EVs is reasonable
- A complexity management challenge!
- Optenni Lab makes it a breeze!

Two Approaches: Array Factor vs. Full Array Analysis

Array factor analysis

- Radiation is a multiple of single element and array factors
- The radiation pattern of a single antenna element is used
- The pattern is replicated to other elements in the array grid
- The S parameters and coupling between the elements are ignored

Full array analysis

- All the radiation patterns of the array are used
- The full S parameter matrix is used, including coupling terms
- For any excitation, matching and termination condition the performance of the array is calculated exactly in Optenni Lab (no new EM simulation needed)
- In this presentation, all results are from Optenni Lab & based on full array analysis

Canonical solutions in Optenni Lab

- Excitations with progressive phase shift between the elements (in two dimensions)
 - EVs phased at fixed intervals
- Excitation from a plane wave from a given direction
 - Theoretical phases of an ideal plane wave at the element locations
- Maximal available gain to a given direction
 - Can be computed with closed-form equations
- Amplitude tapering schemes to reduce side lobes
 - Binomial minimizes the sidelobes but creates highly uneven power distribution over EVs
 - Dolph-Chebyshev creates sidelobes of equal height

EIRP Of An Array - An Elusive Concept

- EIRP (effective isotropic radiated power)
 - hypothetical power that would have to be radiated by an isotropic antenna to give the same signal strength as the antenna in a given direction
- EIRP = Gain(theta, phi)* IncidentPower
- But, remember that for arrays,
 - IncidentPower is a **sum** of incident powers at the array's ports
 - Amplifiers of ports have a maximum power that limit the dynamics of the tapering
 - Active reflection coefficients → how much power really gets radiated?

EIRP Of An Array - An Elusive Concept (continued)

- Expected the effects of the amplitude tapering are:
 - Side lobe levels are reduced
 - Realized gain is reduced
 - EIRP can be dramatically reduced
- Optenni Lab makes this complexity a lot more manageable

Example - A Compact mm Wave 4x4 Array

- Let's analyze the 16 port structure in 3D EM (here, Dassault/CST MWS)
 - Compute radiation patterns and 4x4 S parameter system
 - Push the results to Optenni Lab from CST's Home > Macros > Optenni Lab

Two Canonical Solutions for the 4x4 Array

No tapering
Max gain 16.4 dBi
Max EIRP 58.4 dBm (every Pg = 30 dBm)
Side lobe level -13.7 dB (2.7 dBi)

Dolph-Chebyshev tapering Max gain 15.3 dBi Max EIRP 53.1 dBm (max P_g = 30 dBm, min P_g = 17 dBm) Side lobe level -19.4 dB (-4.2 dBi)

Numerical Beam Optimization in Optenni Lab

- Numerical beam optimization offers many possibilities of controlling beam properties
 - Main lobe direction and beamwidth
 - Side lobe levels
 - Nulls, polarization
 - Control of active reflection coefficient
 - Control of system efficiency
- The optimizer can vary
 - the magnitudes and phases of the beam,
 - only phases, or
 - only magnitudes
- Optimization can be done for the realized gain or for EIRP
- Optenni Lab sets you free from the canonical / analytical solutions

Numerical Optimization Viewed Through Antenna Gain

Maximize gain to theta=90, phi=150

- \rightarrow Realized gain 15.7 dBi (Pg = 28.8 30 dBm)
- → Side lobe level -11.7 dB (4.0 dBi)

Add a side lobe target to the max.gain target

- \rightarrow Realized gain 15.2 dBi (Pg = 21.6 30 dBm)
- → Side lobe level -20.0 dB (-4.8 dBi)

Thus, in terms of gain, main beam drops 0.5dB, but the sidelobe level can be decreased over 8dB

Numerical Optimization Viewed Through EIRP

Maximize EIRP to theta=90, phi=150

- \rightarrow EIRP 57.7 dBm (every Pg = 30 dBm)
- \rightarrow Side lobe level -11.8 dB (45.9 dBm)

Add a side lobe target to EIRP target

- \rightarrow EIRP 51.9 dBm (Pg = 16 30 dBm)
- \rightarrow Side lobe level -19.7 dB (32.2 dBm)

Thus, in terms of EIRP, main beam drops almost 6dB when the sidelobe level is decreased approx. 8dB

Engineering EIRP and Side Lobe Level

- By changing the target levels, a sequence of Pareto-optimal compromises between the EIRP and side lobe level can be obtained
- As an example, see graph on the right
- Such graphs are a tremendous help for engineering array antennas

Conclusions

- In array beamforming optimization, canonical solutions are fast to compute and lead to good initial guesses for optimization
- Numerical beam optimization enables the control of the main beam properties, side lobe levels, active reflection coefficients and EIRP
- Many of the beam optimization goals are contradictory: e.g. maximization of EIRP and minimization of side lobe levels
- By varying the weights of the optimization criteria, various compromises between the contradictory goals can be obtained
- Optenni Lab lets you take complete control of the array feeding and matching challenge
- Turn messy guesswork of array design into engineering with Optenni Lab

