

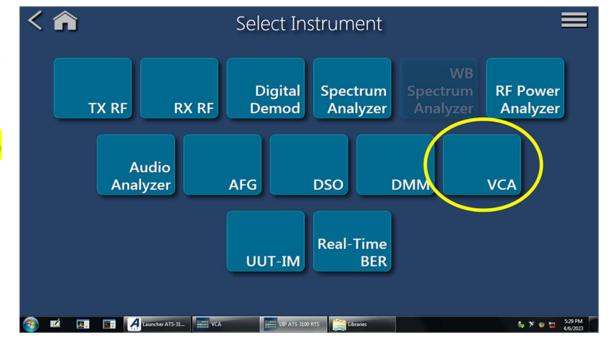
A virtual instrument for RF channel measurements on the ATS-3100 Radio Test Set

Tom Costello, PhD Senior Signal Processing Engineer

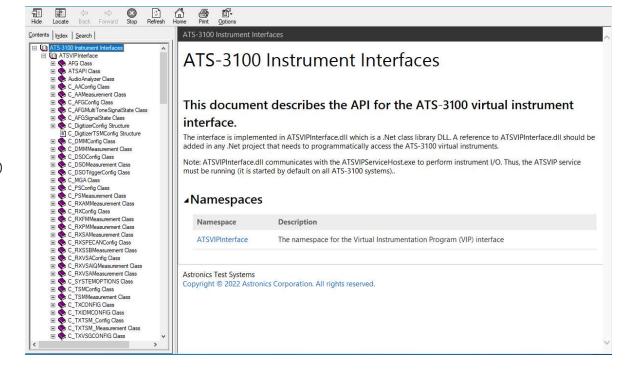
astronic stest systems. com

Overview

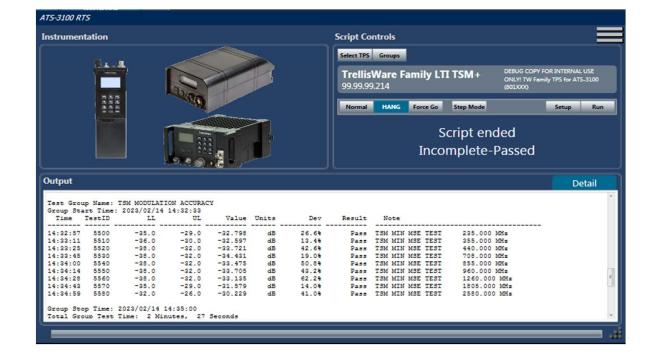
- Background Virtual instruments on the ATS-3100 Radio Test Set
 - » Software-Defined Instrument Platform
 - » Suite of Virtual Instruments (VIs)
 - » Test Executive, Test Program Sets and Data Management
- The Vector Channel Analyzer Virtual Instrument
 - » What it measures
 - » Principle of Operation
 - » Use Cases & Example Measurements
 - » Measurement Performance
- Summary


- Software-Defined Instrument Platform
 - » PXIE-based chassis
 - » Windows 10 on-board host PC
 - » 15" Diag Front Panel Touch Screen
- Hardware Spec Highlights
 - » 80 MHz modulation and IF bandwidth
 - » 1 MHz to 6 GHz RF-FE
 - » 100 W continuous RF power input
 - » 0 dBm transmit output with 10 dB headroom
 - » T/R and Duplex RF ports
- User Features
 - » .NET-based API for programmatic control from on-board Test Executive, C#, Matlab.
 - 32-bit arbitrary sample-rate conversion (10 kS/s to 245.76 MS/s) on Tx and Rx
 - » UUT signal and power interfaces on front panel

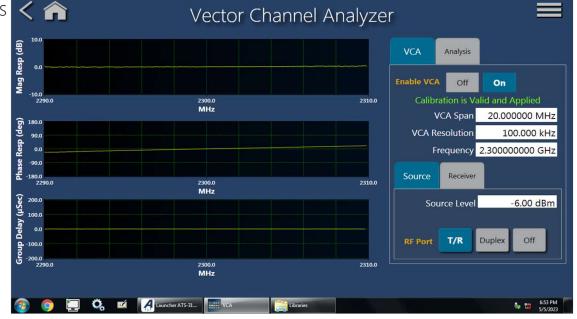
Virtual Instrument Suite


- RF Performance
 - » Spectrum Analyzer
 - » Analog Generator and Receiver
 - » Digital Generator and Receiver
 - » Power Analyzer (Zero-Span)
 - » Vector Channel Analyzer (NEW)
- Audio Performance
 - » Audio Analyzer
 - » Audio Function Generator
- Analog Performance
 - » DSO
 - » DMM

Virtual Instrument API


- Low-level control for all VIs
 - » NFT-based
 - » Classes for
 - > Hardware configuration
 - > Extensive measurement lib
 - > VI embedding in Test Exec

Test Executive and Scripting

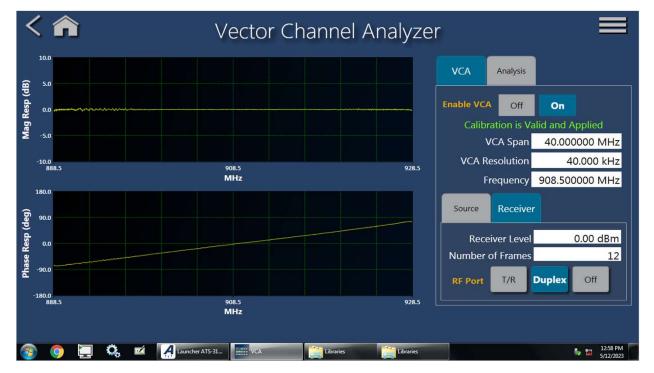

- Test Executive
 - » Custom test definition
 - » Test Program Set (TPS)
- Graphical User Guidance
 - » Hardware setup
 - » Test execution
 - » Embedded VIs
- Data Management
 - » Logging
 - » Data storage

The Vector Channel Analyzer (VCA) Virtual Instrument

- What it measures
 - » VNA S21 comparable measurements
 - » Complex channel transfer function
 - » Most common formats
 - Magnitude / Phase
 - Group delay
- Real-Time Operation
 - » 10 kHz to 40 MHz span
 - » Wide-band stimulus
 - » 64 to 10k points
- Separable Transmit and Receive
- Light-weight tx vector generator
- No receiver phase reference req'd

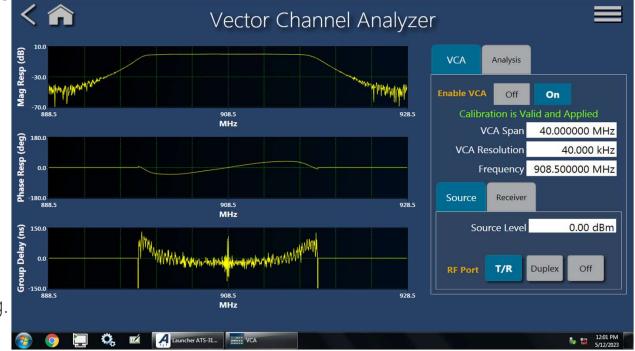
VCA Theory of Operation

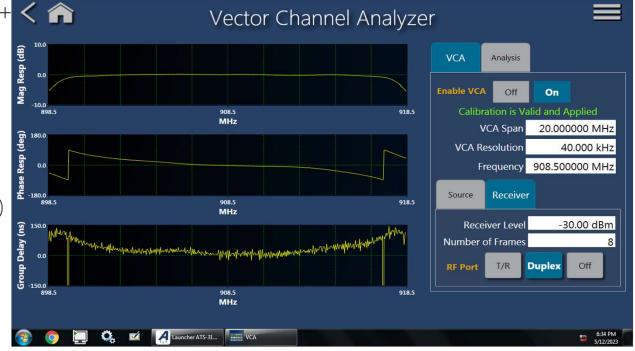
- Wide-band stimulus
 - » Discrete multi-tone
 - » Up to 80 MHz span
 - » Resolution to 1 kHz
 - » RTS Tx Power to 0 dBm
- Coherent Rx Synchronization
 - » No local phase reference req'd
 - » Removes Doppler
 - » Removes common phase
 - » Compensates delay-induced phase ramp
- Span calibration supported


VCA Use Cases

Use Case	Tx/Rx Location	Applications
Lab Bench	Co-located (single RTS unit)	RF Front-Ends In-line RF filters RF Mixers
Over the Air	Separated (embedded tx)	Antennas Remote Site
Moving platform	Separated (embedded tx)	Air-born Vehicular

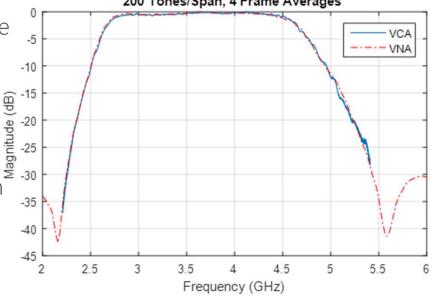
In-Line Measurement Cal


- Mag compensation only
 - » With short load at desired reference plane.
 - Cal is stored and applied to subsequent measurements.
- Phase ramp varies with
 - » Tx/Rx sample-clock phase mismatch
 - » Propagation
- Ramp is removeable with processing, but of limited utility.


- Mini-Circuits ZVBP909S+
 - » Hi-Q cavity band-pass filter
 - » 900 MHz ISM band
 - 3 40 dB out-of-band rejection
 - » ~ 2 dB in-band insertion loss
- VCA Measurements
 - » Magnitude: 30 35 dB useful dynamic range
 - » Phase: configurable masking removes low SNR skirts
 - » Group Delay: configurable avg. aperture for smoothing

OTA Measurement Example

- DUT: Mini-Circuits ZVBP909S+
 - » Hi-Q cavity band-pass filter
 - » 900 MHz ISM band
 - y 40 dB out-of-band rejection
 - ~ 2 dB in-band insertion loss
- VCA Measurements
 - » Separated Tx/Rx
 - » 20 MHz Span (RF SigGen limit)
 - » Indoors LOS 8m path
 - » 12 dBi Yagi antennas at 2m ht.
 - » ~50 dB FSPL
 - ~ 26 dB net path loss



- DUT: Mini-Circuits VBFZ-3590-S+ BPF
 - 3 1 GHz wide BPF at 3.5 GHz
 - » Bench instruments for stimulus & i/q capture
 - » 20 MHz VCA spans
 - » ATS-3100 analysis processing
 - » Reference grade VNA
- Results
 - » Simple step & dwell VCA stitching approach
 - » Excellent agreement up to 5 GHz
 - » Better stitching will improve > 5 GHz

VCA Transfer Function H(f)
MiniCircuits VBFZ-3590-S+
RF Freq = 2220 to 5400 MHz
20 MHz Spans, 100 kHz Resolution
200 Tones/Span, 4 Frame Averages

Summary

- VCA closely replicates high-end VNA S21 measurements in a virtual instrument
- Separability of Tx and Rx creates new measurement capabilities
- Stimulus vector generator software easily embeddable in virtually any platform.

