

TUMA21

Dielectric and Cavity Resonators for Accurate Characterization of Liquids in the 1-50 GHz Frequency Range

Speaker: Marzena Olszewska-Placha

QWED company (Booth #2447)

(www.qwed.eu)

Measurements of liquids

Resonant methods are proven to be the most accurate among microwave material characterisation methods

Low frequency dielectric resonator cavities metal enclosure dielectric resonator

Dielectric resonator cavity at 1 GHz

Higher frequency cavity resonators

24-GHz Cavity resonator

(with fused silica tube, rubber tube and syringe)

Single solution for 15-50GHz

Measurement methods

neasured material

TE_{01δ} resonance mode (described with resonant frequency and Q-factor)

- Electric field mostly confined within the dielectric pill
- Circumferential electric field
 - → no issues with galvanic connection of the lid
- Zero electric field at ρ=0
 - → no risk of supressing resonance if lossy sample is inserted

Measurement methods (2)

- Two/three stage measurement
- Reference measurement cavity with empty container (f_{ref} and Q_{ref})
 - → the inner diameter of the container/container needs to be precisely calibrated
- Measurement of sample-loaded cavity (f_s and Q_s)
- Scalar measurement of transmission curve (|S21|) is typically sufficient

Measurement methods (3)

Dielectric resonator

Specification

Fluid diameter < 16 mm

 $TE_{01\delta}$: f = 2.45 GHz (Q = 29,400)

 $TE_{02\delta}$: f = 5.16 GHz (Q = 27,200)

Cavity resonator

Specification

Fluid diameter < 3 mm

 TE_{011} : f = 23.8 GHz (Q = 14,200)

Fabry-Perot open resonator with a dedicated fluid container

Specification

Fluid thickness: 100-400 μm

Frequency: 15-50 GHz

Electronic coolants

Low-loss liquids typically exhibit dispersive properties at microwaves (Debye-like relaxation)

Dielectric constant

Fluorinert (3M FC-40)

Loss tangent

Connecting Minds. Exchanging Ideas. 2.60

Frequency (GHz)

50

Oils

Engine oil

5 10 15 20 25 30 35 40 45 50 Frequency (GHz)

Water

TE_{0mn} cylindrical modes provides superior accuracy in the characterization of lossy liquids, like saline water.

$$\varepsilon(\omega) = \varepsilon_{\infty} + \frac{\left[\varepsilon_{S} - \varepsilon_{\infty}\right]}{\left(1 + j\omega\tau\right)} - j\frac{\sigma}{\omega\varepsilon_{0}}$$

- ε_{s} low-frequency limit
- ε_{∞} high-frequency limit
 - relaxation time
- σ ionic conductivity

Measurements of saline water for different salinity, at 2.5 GHz, 4 GHz, 7.86 GHz, 12.2 GHz, 16.9 GHz, 24.3 GHz

^{*} J. Krupka, Measurements of the complex permittivity of highly concentrated aqueous NaCl solutions and ferrofluid employing microwave cylindrical cavities, Meas. Sci. Technol. 26 (2015).

Sand with saline water

Intrinsic properties of mixture components can be evaluated

(e.g. using Maxwell-Garnett model)

Dielectric resonator (1.04 GHz)

Temperature measurements (1)

Dielectric characterization versus temperature

PC with control app

VNA Climatic chamber with cavity resonator @24GHz

Temperature measurements (2)

Dielectric characterization versus

temperature coolant liquid and canola oil

Uncertainty of Dk due to variation of diameter of quartz tube @2.5 GHz - 0.1% @24GHz - 0.7%

Please visit us

Booth # 2447

