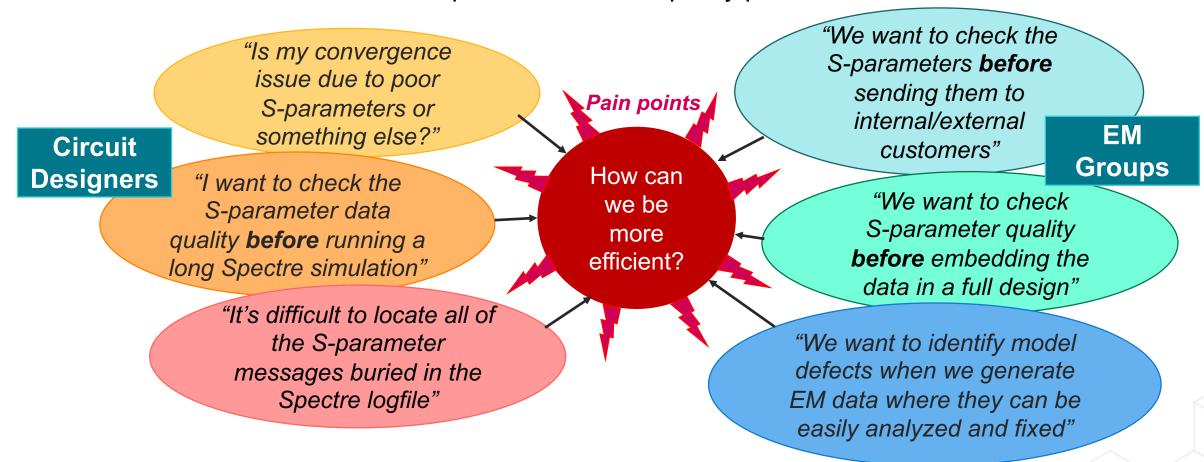


Introducing the Spectre S-Parameter Quality Checker and Rational Fit Model Generator

Tawna Wilsey, Application Engineer Architect Niloofar Farnoosh, Principal Software Engineer 13 June 2023

cadence°


Agenda

- Why are we doing this?
- S-parameter quality checking mode
- Model generation mode
- How to get help
- Summary

Why Are We Doing This?

- Simulating S-parameters in a time-domain (transient or periodic steady state) simulator is challenging
- Poor quality S-parameter models result in convergence and accuracy issues in Spectre® simulation, and often it's difficult to determine S-parameter model quality prior to simulation

Introducing S-Parameter Quality Checker and RFM Generator

- New flow introduced in Spectre® 21.1 ISR
 - Spectre command line only
 - Contact Cadence to gain access
- Eases the transition from "EM simulation" to "Spectre circuit simulation"
 - Checks S-parameter quality right after EM simulation, when it is quicker and easier to fix
- Checks S-parameter data quality before Spectre simulation
 - Data can be from EMX[®], Clarity[™], or AXIEM[®] solvers, Spectre simulations, lab measurements, etc.
- Generates rational fitted models (RFM) from S-parameter data
 - Similar to what is currently done during Spectre simulation
 - RFM can be easier to simulate in transient analysis, compared to S-parameters
 - RFM are causal and passive by construction.
- Tuned specifically for Spectre algorithms
- Multithreading supported

Important Notes

Goal: Assist customers in debugging problematic S-parameter files and improving Spectre® simulation

- The new tool is not a "magic bullet"
- Intended to reduce rate of problematic data coming downstream to Spectre simulator
 - It is not possible to completely eliminate all false positives / false negatives
- When developing S-parameter quality tests, each test has thresholds that must be tuned
 - Quality Checker thresholds are determined by statistical analysis on a collection of real-life
 S-parameter datasets

Two Functionalities

 Quality checking tool: Generates a table in the output logfile with important checks on S-parameters

C

- RFM fitting tool: Generates a rational fitted model (RFM)
 - Models are passive and causal by construction
 - Summary of the fitting process printed in the output logs, shows average of relative fitting error
 - Fitted S-parameter Touchstone file generated from the rational model
 - Can compare fitted model to the original S-parameter file
 - RFM can be entered into the nport properties and used in Spectre® simulations

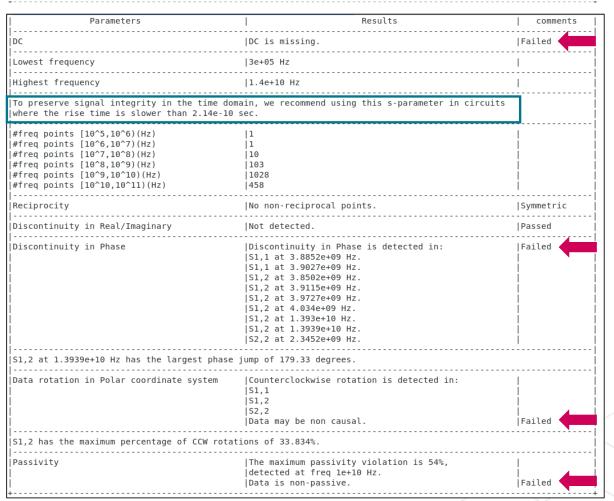
Running the Spectre S-parameter Quality Checking Tool

Basic command:

```
spectre +sparam <Sparam_filename> +checking -o <output_directory>
```

- Checks performed and reported:
 - DC point: Was a DC point provided? Is the imaginary component of the DC point equal to zero?
 - Lowest frequency: Lowest (non-DC) frequency point
 - Highest frequency: Used to calculate fastest rise time
 - #freq data points per decade: Indication of data density
 - Reciprocity: Is the S-parameter matrix is symmetric?
 - Discontinuity in real/imaginary: Discontinuities in either the real or imaginary part can impact simulation
 - Discontinuity in phase: Discontinuities in phase can impact simulation
 - Data rotation in polar coordinate system: Elements with counter-clockwise rotations indicate possible causality issues, which can impact simulation
 - Passivity: Absolute tolerance of the passivity criteria is 1e-6, passivity issues impact simulation
- Quality Checking Tool is geared specifically for the RFM Generator in Spectre[®] simulator

Snapshot of S-Parameter Quality Checking Tool Output


spectre +sparam <Sparam_filename> +checking -o <output_folder>

Example 1: Snapshot of the Quality Checking Tool output

+		
Summary of Sparam Checking Tool		
 Parameters	 Results	comments
DC	DC is provided. Imag DC is not detected.	 Passed
 Lowest frequency	5e+07 Hz	Inconclusive
 Highest frequency	1e+11 Hz	ı
To preserve signal integrity in the time domain, we recommend using this s-parameter in circuits where the rise time is slower than 3e-11 sec.		
#freq points [10^7,10^8)(Hz) #freq points [10^8,10^9)(Hz) #freq points [10^9,10^10)(Hz) #freq points [10^10,10^11)(Hz) #freq points [10^11,10^12)(Hz)	2 17 180 1800 1	
Reciprocity	No non-reciprocal points.	Symmetric
Discontinuity in Real/Imaginary	Not detected.	Passed
Discontinuity in Phase	Discontinuity in Phase is not detected.	Passed
 Data rotation in Polar coordinate system - - - - -	Counterclockwise rotation is detected in: S1,1 S2,2 S2,4 S3,3 S4,4 Data may be non causal.	 Inconclusive
S2,4 has the maximum percentage of CCW rotations of 24.462%.		
 Passivity 	Passivity violation is detected, but is smaller than le-6%. Data is almost passive.	

Note: The RFM Generator may still create a good RFM even if there are some "fails" in the Checker output

Example 2: Snapshot of Quality Checking Tool output

Running the Rational Fitting Mode

Rational Fitting Mode creates a rational fitted model for the S-parameter data

Use command line options +sparam and +fitting:

```
spectre +sparam <Sparam_filename> +fitting=rfm -o <output_directory>
```

- Fitted S-parameter data and encrypted RFM files placed inside the RFMOutput folder when the -o option used
 - Otherwise, results put in current working directory
 - Only rfm supported. Linear interpolation to be considered in the future.
- S-parameter data file format detected automatically; must be spectre, touchstone, citi or bnp
- Both absolute and relative paths supported

Output of RFM Generator

Successful:

```
Average of relative fitting error is: 1.045774e-02.

S-parameter fitting finished successfully for datafile: mySparams.s6p.

Fitted s-parameters is stored in file:
/grid/tfo/vol168/tawna/SParamRFMtesting/SparamCheckerOutput/RFMOutput/fitted_mySparams.s6p

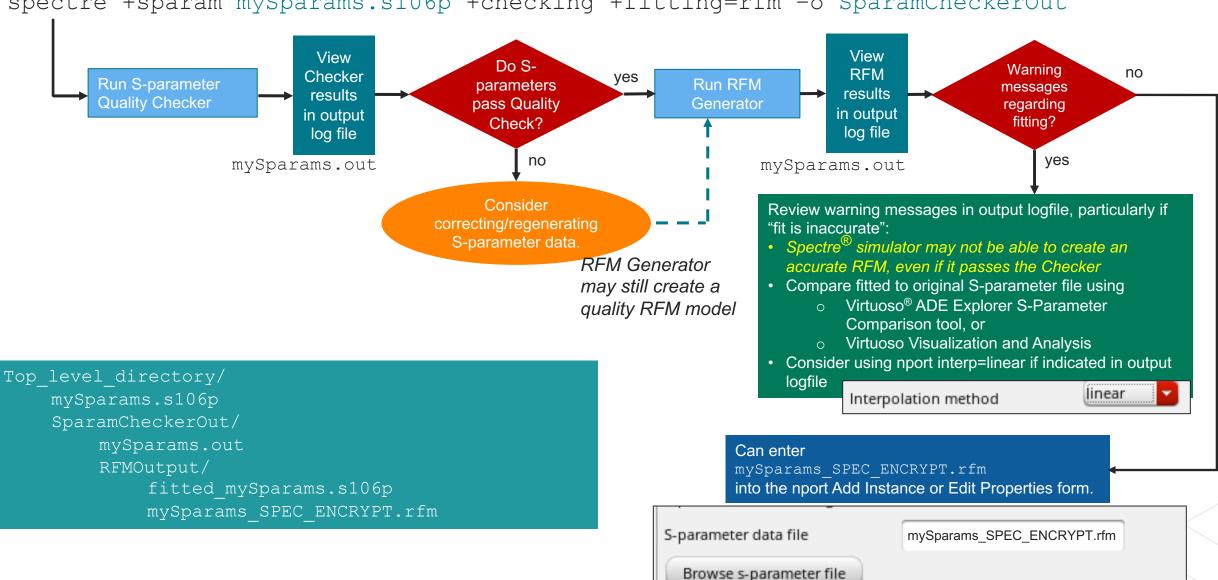
Time spent in sparam fitting: CPU = 623 ms, elapsed = 1.321 s
```

Warning that RFM may not be accurate:

```
Average of relative fitting error is: 8.351971e-02.

S-parameter fitting finished successfully for datafile: mySparams.s147p.

Warning from spectre during circuit read-in.


WARNING (CMI-3057): NPORTO: Relative element-wise error of fitted s-parameter data is larger than 3.000000e-02. As a result, simulation results may be inaccurate. Try interp = linear or spline for better results.
```

Note: The Checker may "pass" an S-parameter file, but the fitting may fail

Summary of Flow

spectre +sparam mySparams.s106p +checking +fitting=rfm -o SparamCheckerOut

Accessing Command Line Help

spectre -h sparam

+checking

Checking quality of the original S-parameter data including:

DC: Checking if DC points are provided, and also DC imaginary is zero. Lowest frequency: Reporting minimum freq in the data after DC point.

Highest frequency: Reporting maximum freq in the data.

#freq data points per decade: Reporting number of frequency data points per decade.

Reciprocity: Reporting if S-parameter matrix is symmetric.

Discontinuity in Real/Imaginary: Reporting S-parameter elements with discontinuity in either real or imaginary part.

Discontinuity in Phase: Reporting S-parameter elements with discontinuity in phase.

Data rotation in Polar coordinate system: Reporting S-parameter elements with counter-clockwise rotations and possible causality

Passivity: Checking S-parameter data passivity. Absolute tolerance of passivity criteria is 1e-6.

'rfm': only generates rational fitted model.

Enables the multithreading capability, where, N is the number of threads specified. A maximum of 64 threads are allowed. '+mt' can be used as an abbreviation of '+multithread'.

issue.

+fitting [=rfm]

+multithread=<N>

Summary

- Spectre® S-parameter Quality Checker and RFM Generator available in Spectre 21.1 ISR
 - Contact Cadence to obtain access
- Successfully tested on >350 representative testcases (1-port to 700-port size)
- EM designers can easily determine S-parameter quality when it's quicker/easier to fix in the flow, before embedding S-parameters in a full design or sending to others
- Circuit designers now have new rational fit model (RFM) option (passive and causal by construction), which Spectre simulator can use in time-domain simulations
- Reduced rate of problematic S-parameter data coming downstream to Spectre simulator; simulations faster and more robust
- S-parameter Quality Checker and RFM Generator increases designer productivity

cādence®

© 2023 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and the other Cadence marks found at https://www.cadence.com/go/trademarks are trademarks or registered trademarks or logo, and the other Cadence marks found at https://www.cadence.com/go/trademarks are trademarks or registered trademarks or logo, and the other Cadence marks found at https://www.cadence.com/go/trademarks are trademarks or registered trademarks or logo, and the other Cadence marks found at https://www.cadence.com/go/trademarks are trademarks or registered trademarks or found at https://www.cadence.com/go/trademarks are trademarks or registered trademarks or found at https://www.cadence.com/go/trademarks or found at https://www.cadence.com/go/trademar