

WEMA23

Overview of Integrated Passive Devices (IPD) for RF Front-end Application

Feng Ling and Lijun Chen Xpeedic

Outline

- ☐ Introduction of IPD
- ☐ IPD Process evolution
- ☐ IPD for NR RF front end
- ☐ IPD for IoT RF front end
- Summary

Introduction of IPD

Integrated Passive Device

- Thin film process
- High metal conductivity, high substrate resistivity
- Thin film resistor, MIM capacitor, through substrate via, magnetic material...

IPD advantages

- Small size, low profile, integration friendly, great consistency, low cost
- Size and cost reduction for hand-held, wearable applications

IPD Applications

- IPD reduces size
 - Small size, low profile, friendly integration, great consistency, low cost in massive production

- Constant need for size reduction
 - especially for passives (usually large BOM)

Xpeedic's IPD Model

IPD 1.0: HRSi IPD Process

Thin film process

- MIM cap with CVD dielectric
- Ultra thick copper with
 Damascene process
- Optional Thin film resistor
- Mostly HRSi
 - Stable and efficient mass production

IPD 1.5: HRSi + RDL

2 layer Cu

Q improvement ~20%

IPD 2.0: Solenoids by TGV

IPD for N77 & N79

- N77 & N79
 - Wide bandwidth, Higher freq.
 - Difficult for acoustic filters
 - Right for IPD
- IPD vs. LTCC for N77 & N79
 - Lower profile
 - Better consistency
 - More for integration
 - evolving process

Consistent performance of IPD

TGV vs. HRSi for N77

HRSi 1005

20% better IL while 10% better Rejection

Item	Freq.(MHz)	IPD 1005	TGV 1005	Comparison
IL(dB)	3300~4200	1.6	1.3	个0.3
RL(dB)	3300~4200	20	20	
RJ. (dB)	1710~1850	42	45	↑ 3
	2400~2500	30	32	↑2
	2620~2690	33	35	↑2
	5150~5850	27	29	↑2
	5850~5925	30	35	个5
	6600~8400	32	33	1
	9900~12600	31	35	↑ 4

Matching Filter for N77

Same 1005 size IPD, but with matching integrated

Hybrid for N77

- Hybrid solution
 - IPD + Acoustics
- to achieve both
 - wide bandwidth
 - close-in rejection
 for Wi-Fi co-exist

Roadmap

IPD for IoT

- All-in-one typically
 - Balun + Matching + Filter...
 - Wire-bonding / Flip-chip
- High integrity, low profile
- BOM reduction for IoT module

an IPD IoT Die

Design Challenge

- Usually unknown impedance
 - Initial impedance from discrete component design
 - Design coverage for impedance uncertainty
- Usually no specific passive specification
 - Co-design & Co-simulation
 - Trade-off between key system requirements

- Initial impedance
- Design coverage

A Typical Device

- IPD vs. SMT
 - 2×size reduction
 - 1.5×height reduction
 - Dozens →1, device qty. for
 BOM

IPD Size:2.44mm×1.17mm ×0.15mm

Schematic

Summary

- Constant need for passive integration
- Process evolves for greater performance
- IPD gets into more modules for 5G NR and IoT front-ends
- All-passive-in-one adopted for more RF front ends
- Co-design / simulation helps complex integration

