# RF Hot Switch Reliability of MEMS Switches 

Presented by: Teague Kohlbeck


## MEMS Contact Switches

- High Voltage Gate signal closes the switch
- When the gate voltage is turned on, the beam is pulled in and connects to the contact



## Hot Switching Introduction

- Hot Switch events occur when a switch changes state with a load signal turned on
- For best performance, avoid hot switch events
- Hot Switch events can exacerbate failure mechanisms such as wear-out and micro-welding
- Surface materials can affect the longevity of switches
- Using hard material as contact surface can provide resistance to wear and demonstrates capability of withstanding high-intensity arcing and to be free from sticking or pitting
- Hard material coated in Gold (Au) on the MEMS switch contacts can extend the life



## Test System



## Test Methodology

- Channel under test was cycled at 10 kHz
- On State (Insertion Loss) and Off State (Isolation) measurements taken at set intervals (ex. Every 100,000 cycles)
- All unused channels terminated with $50 \Omega$ loads
- A thru line was also measured to ensure no anomalies in system
- 2 Failure modes:
- "Stuck open" defined as on-state measurement indicating switch is in the off-state
- "Stuck closed" defined as off-state measurement indicating switch is in the on-state



## Test Conditions

- Two switch topologies tested: SP4T and SPST
- All testing was completed at room temperature

| Device |  | Conditions |  |
| :--- | :--- | :--- | :--- |
| Name | Topology | Frequency | Power Levels |
| MM3130 | $6 \times$ SPST <br> w/External Driver | 500 MHz | 20 dBm <br> 25 dBm <br> 30 dBm |
|  |  | 3 GHz | 15 dBm <br> 20 dBm <br> 25 dBm |
| MM3100 | 6 x SPST <br> w/Internal Driver | 500 MHz | 20 dBm <br> 25 dBm <br> 30 dBm |
| MM5130 | SP4T | 500 MHz | 20 dBm <br> 25 dBm <br> 30 dBm |

## MM3130 Results

MM3130 Hotswitch


MM3130 Hotswitch


- Generally, the switches failed "stuck closed"


## MM3130 Results (cont.)

IL Variation Over Cycles
MM3130 20 dBm 3 GHz RF


IL Variation Over Cycles
MM3130 20 dBm 500 MHz RF


MM3130 Hotswitch vs Frequency


- Insertion Loss variation was less than 0.02 dB over the lifetime of the switch
- Higher frequencies has a greater impact on switch lifetime


## MM3100 Results



IL Variation Over Cycles
MM3100 20 dBm 500 MHz RF


- Generally, the switches failed "stuck closed"
- Insertion Loss variation was less than 0.02 dB over the lifetime of the switch

[^0]
## MM3100 RF vs DC Hot Switching

MM3100 Hot Switch RF vs DC
$50 \Omega 500 \mathrm{MHz}$ CW RF System, $47 \Omega$ DC System, Ambient 25 C

DC HO
$\mathrm{V}=2.236$

RF Hot Switch 20dBm/ 2.236VRMS

IL Variation Over Cycles
MM3100 20 dBm 500 MHz RF


Contact Resistance over Hot Switch Cycles
Measured at Ambient 25 C


- RF system run at $20 \mathrm{dBm}, 50 \Omega, \mathrm{~V}_{\text {RMS }}=2.24 \mathrm{~V}$, DC system run at 2.24 V with $47 \Omega$ load
- Insertion Loss variation was less than 0.02dB over the lifetime of the switch
- Contact resistance varied by less than $0.05 \Omega$ over the lifetime of the switch


## Intermittent Hot Switch Events



- Intermittent hot switch events will have less of an impact on lifetime
menlomicro


## MM5130 Results

MM5130 Hot Switch



Cycles (in Millions)

- Generally, the switches failed "stuck closed"
- Insertion Loss variation was less than 0.02 dB over the lifetime of the switch
\& menlomicro


## Effects of Gate Voltage Slew Rate on Life Span

| Driver | Rise Time | Fall Time |
| :--- | :--- | :--- |
| HV513 | 2920 ns | 653 ns |
| HV509 | 2171 ns | 5046 ns |

- The slew rate of the driver affects the hot switch lifetime of the switch
- A quicker slew rate will result in better hot switch lifetime

MM5130 Hot Switch HV509 vs HV513 Driver Board
Measured at Ambient 25C, CW 500MHz 20dBm


## Conclusions

- Although lifetime was degraded, over 100,000 cycles was observed with $30 \mathrm{dBm}(1 \mathrm{~W})$ hot switch events.
- Surface materials can affect the longevity of switches
- Using hard material as contact surface can provide resistance to wear and demonstrates capability of withstanding high-intensity arcing and to be free from sticking or pitting
- Hard material coated in Gold (Au) on the MEMS switch contacts can extend the life
- Slew rate impacts hot switch lifetime, quicker slew rate is better for longevity
- Protection circuits can be used to mitigate hot switch events and improve switch lifetime.



Menlo Microsystems, Inc.
49 Discovery, Suite 150
Irvine, CA 92618
www.menlomicro.com


[^0]:    E) menomicro

