

3D Printed RF Structures Open the Potential to Think Out of the Box

Presented by:

John Coonrod

Technical Marketing Manager

Agenda

- Simple overview of Radix™ 3D-Printable RF material
- Review of Radix material being used to create GRIN structures with 3D printing
- New evaluations using Radix material, with different 3D printed RF structures

3D Printed RF Structures Open the Potential to Think Out of the Box

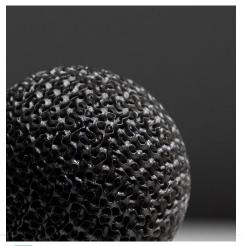
Rogers Radix™ 3D-printable dielectric materials provide a scalable solution to manufacturing gradient index and complex dielectric parts that enable our customers to enhance the figure-of-merits of their RF systems

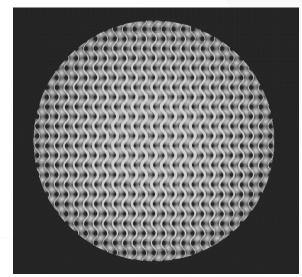
Rogers Radix Printable Dielectrics

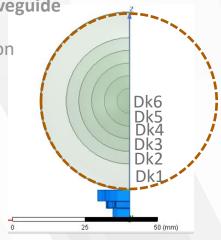
Rogers new low-loss uv-curable resin

Fortify DLP 3D Printer

to create new RF dielectric components

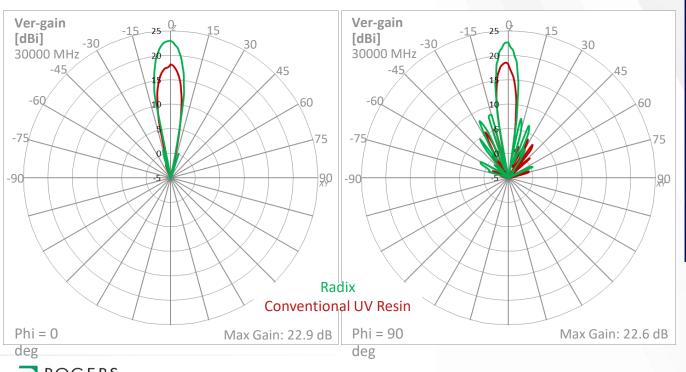

3D Printed RF Structures Open the Potential to Think Out of the Box

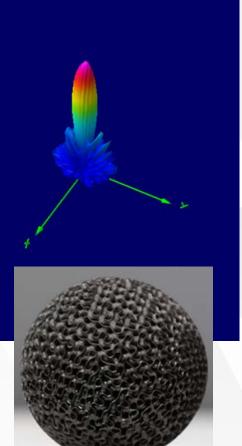

Spherical, 1-2 Dk Lens Design


Conventional (1-2 Dk) Luneburg lenses tested at 27-30 GHz, fed with WR-34 waveguide

- Used standard DLP material with a loss tangent of 0.039 @ 10 GHz
- Used Radix[™] material with a loss tangent of 0.0044 @ 10 GHz for a comparison
- Tested at a first position and then rotated 90° for a second position

Results match simulation and are consistent in all positions, with Rogers' material providing >3dB better gain performance


- Dk1 = 1.11 @ R = 31.0mm
- Dk2 = 1.26 @ R = 27.9mm
- Dk3 = 1.42 @ R = 25.4mm
- Dk4 = 1.59 @ R = 21.7mm
- Dk5 = 1.75 @ R = 18.0mm
- Dk6 = 1.92 @ R = 12.4mm



3D Printed RF Structures Open the Potential to

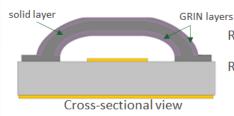
Think Out of the Box

Measured results using 3D printed Radix™ material for a Luneburg lens

3D Printed RF Structures Open the Potential to

Think Out of the Box

- The Radix™ 3D-printable RF material can be used to create a huge variety of RF structures
- For a relatively simple experiment we have investigated different, basic radome designs
- The experimental radome designs are shown here
- There are four different radome designs and each are using the 3D-printable Radix material
 - The current Radix product has a Dk of 2.8
 - An experimental Radix product, that is early in the development stages, has a Dk of 4.6


Radome # 1, Dk = 2.8

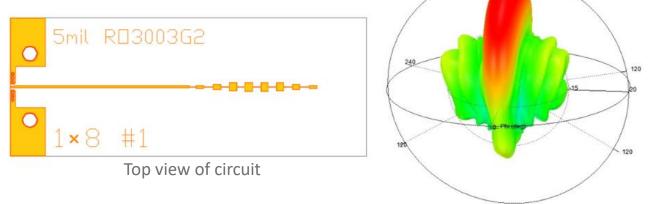
Radome # 2, Dk = 4.6 (experimental)

Radome # 3, Dk = 2.8

Radome # 4, Dk = 4.6 (experimental)

Radome # 5, Dk = 2.8

Radome # 6, Dk = 4.6 (experimental)

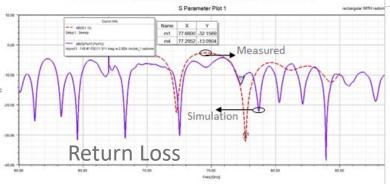

Radome/Lens # 7, Dk = 2.8

Radome/Lens # 8, Dk = 4.6 (experimental)

3D Printed RF Structures Open the Potential to

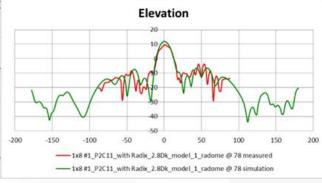
Think Out of the Box

- Shown here is our mmWave antenna test vehicle to be used with our radome experiments
- The circuit is a microstrip series fed patch antenna built on 5mil RO3003G2™ laminate
- It is designed to operate at 76.9 GHz with 1.5 GHz bandwidth
- Modeled with Taylor distribution amplitude for low side lobe response


3D Printed RF Structures Open the Potential to Think Out of the Box

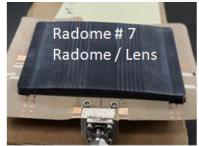
There is a good match between the measured results and the simulations

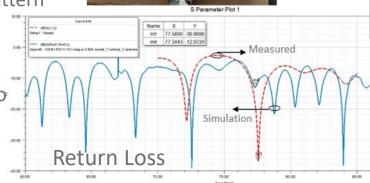

There is room for improvement

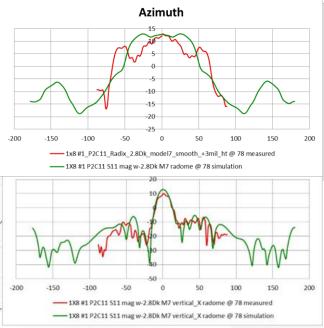

However, this was our first attempt and the design has not been optimized yet ...

Radome # 1 Rectangular radome

- Red curve is measured data
- Green curve is simulation
- Connector losses are included in the measured data






3D Printed RF Structures Open the Potential to Think Out of the Box

- There is a good match between the measured results and the simulations
- This design is a radome with a lens effect
- The lens effect is intended to collimate the radiation pattern
- This is our first attempt and there are multiple things that can be done to optimize this design

- Red curve is measured data
- Green curve is simulation
- Connector losses are included in the measured data

Thermal Stability Consistency is Even More Important at Millimeter-Wave Frequencies

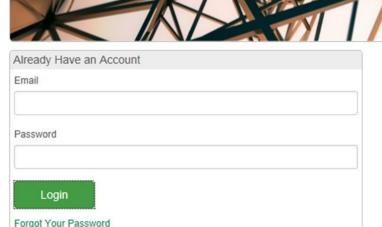
Summary

- Radix[™] material is a low loss RF material, that is used with 3D printing technology to create RF structures
- We have demonstrated that the Radix material can be used to create RF structures using GRIN technology
- We have also shared some of our results from a few experiments with Radix material, showing measured results and compared to simulations
 - Admittedly, these structures would need to be optimized for more demanding applications
 - However, our experiments show feasibility and RF models can correlate well to this technology
- There are many RF structures that can be made with the low loss 3D printable Radix materials and we have demonstrated only a few

Thank You

Technology Support Hub

Microwave Impedance
Calculator


ROG Mobile App

Electrical & Thermal Calculators

Engineering Support

Technical Papers

Videos

Creating a new account takes about 1-2 minutes. Once created you will have access to all the features listed below. Additionally, you can configure your account to receive updates and information regarding Rogers' materials.

· Create Your Free Account

Calculators

Try our calculator and various conversion tools.

Rog Mobile

Access Rogers' calculators, literature, technical papers and request samples on your smart phone or tablet through the ROG mobile App.

Technical Papers

Search through our vast array of technical papers, white papers and documents.

Video Library

Watch videos featuring our technical experts.

Contact An Engineering Representative

Watch live demonstrations to learn everything there is to know.

