

Addressing Thermal and Electromagnetic Challenges with Today's Advanced Devices

Dustin Kendig, Microsanj LLC Sedina Wane, eV Technologies

International Microwave Symposium – San Diego, California, USA, Jun 11-16, 2023

Objective

- To introduce the audience to thermoreflectance & its applications to failure analysis, thermal characterization, & EM analysis
- To detect thermally dependent failures/defects
 - Submicron defects
 - Time dependent thermal events (ESD, latch-up, etc)
 - 3D effects (3DIC, Voids, buried defects)
 - AiP defects

Outline

- Introduction to Thermoreflectance
- Spatial Resolution
- Temporal Resolution Applications
 - TBR
 - Latch-up
 - ESD
 - 3D defect depth
- Over-the-Air (OTA) testing
- Conclusion

Thermal Characterization Challenges

Thermoreflectance (TR) Imaging

Reflected light intensity is dependent on temperature

$$\frac{\Delta R}{R} = C_{\mathrm{TR}} \, \Delta T$$
 c_{TR} = Thermoreflectance Coefficient

A pulsed light source can be used to probe a sample surface

using UV, NUV, VIS, or NIR light

• Spatial: 100's nm (with UV & VIS)

• Time: 800 ps (Laser) or 50 ns (LED)

Temp. Resolution: 1-100mK

Building Blocks for TR & IR Imaging

IR, TR, & EMMI

	Infrared Emission (IR)	Thermoreflectance (TR)	Emission (EMMI)
Spatial	2-10 μm Diffraction limited	250 to 700 nm Diffraction limited	>700 nm Diffraction limited
Sensitivity (NETD)	~10-100 μK	~1-250 mK	No temperature
Transient Analysis	ms	ps to μs	ms
Notes	Metals have very low emissivity	Equally applicable for metals or semiconductors	Transistor/diode leakage only
Physics	Planck Law / Blackbody Radiation	Reflection / Fresnel / Maxwell's Equations	Electron-Hole recombination
Non-Invasive?	Yes, unless coating used	Yes	Yes
	Radiated Power Density Planck Law	Electrical	CCD Detector

Full Spectrum Thermal Imaging: UV to IR

Lock-in Thermography (LIT)

- LIT is a non-destructive averaging technique that can be used to improve detection of low power defects
- Resolution can be improved by
 - 1/VN (N is the number of pixels)
 - 1/Vt (t is the averaging time)

High Spatial Resolution

Transient Measurements

Transient (dynamic) thermal response contains all information about a linear system. Heating and cooling curves contain all the information about the heat-conduction path.

Transient Measurements to Extract Resistances & Material Properties

András Poppe SEMITHERM 32 Short Course 4

http://www.thermengr.net/TechBrief/TB-15.pdf

Improving Thermal Interfaces (TBR)

- Transient Temperature measurements help isolate dominant thermal interfaces
- Thermal Boundary Resistance (TBR) can be obtained from the heating curve

Transient Thermal Imaging of Latch-up

- High speed imaging allows you to view the progression of the failure
- Pulsing at kHz or MHz localizes the failure location and prevents damage

Investigating Short-Circuit Destruction

Nanosecond thermal imaging allows for imaging of current filaments

Surface Temperature after 4µs pulse

HBM ESD Current Filaments

Defect Depth in 3D Structures

Diffusion Time: $\tau = d^2/4\alpha$

Delay in thermal signal for the 140Ω short indicates the defect is buried below the metal layers

Thermal Imaging to Electromagnetic Field Analysis

- Chip Level
- Package Level
- PC Board Level
- System/Antenna Level

• 2x Performance Benefit

eV-Technologies & Microsanj Demonstrate Unified OTA-Testing Solutions Linking Thermal-Imaging to Electromagnetic-Field Sensing

Think Energy!

- ✓ Unified functional and reliability testing solution Based on a holistic Chip-Package-PCB-Antenna vision
- ✓ Ultra-fast test-time compliant with industrial requirements

 No need for mechanical positioner/step-motor system
- ✓ High accuracy absolute temperature calibration

 Using Quantum-Spin thin-film coating with Sub-µm spatial resolution

MicrosanJ

eV-Technologies & Microsanj Evaluate new OTA-Testing Solutions for 77GHz Radar Systems based on TI-Chipset

Two Radar Modules assessed:

✓ Standard: 2 TX & 4 RX Antennas Baseline TI- Demoboard+Processing

✓ Custom: 12 TX & 16 RX Antennas Custom-Antennas using TI-Chipset

Very Fast and Easy Detection of Faulty Antenna Elements [Radar Chinsets Testing]

temperature (EM-Thermal coupling) △

 Orientation
 Inside

 Sample
 1/4

 Time
 0 s

 Maximum (Sample)
 25 °C

 Minimum (Sample)
 27 °C

 Maximum (Global)
 27.1049 °C

 Minimum (Global)
 24.8399 °C

0.3 W @ 77 GHz, leading to 2.5 degrees heat increase mainly in the antenna part

Conclusion

- Sub-micron thermal defects are detected with TR
- Nanosecond thermal images show current filament location
 & propagation
- Transient analysis discloses defect depths in 3D structures

Thermoreflectance Imaging can validate Electromagnetic Performance