

WEMA7

Fabry-Perot open resonator for single-sweep characterization of dielectric sheets in the 10-130 GHz range for 5G/6G applications

Speaker: Bartlomiej Salski

EMArges company (Booth #451)

(www.emarges.com)

About us

Origin: Spin-off at Warsaw University of Technology

Location: Warsaw, Poland

Size: SME

Main expertise: Resonant measurement methods (>1 GHz)

Main product: Fabry-Perot open resonator

EMArges

Fabry-Perot open resonator

• Q-factor reaching 360k ($tan\delta > 10^{-5}$ can be measured)

Measurement time (ca. 5 minutes for 20-130 GHz)

TEM_{0,0,27}

Gaussian mode

of the empty FPOR

10-130 GHz single-sweep system

with Keysight coax-coupled extenders

Dielectric constant

The choice of an electromagnetic model of the FPOR is essential

to get the dielectric constant with accuracy better than 0.5%

Look-up table computed with the scattering matrix method

Loss tangent

Extremely large Q-factor of the empty FPOR makes it very sensitive

Plastics

- Typically: 2.02 (PTFE) < Dk < 3.5 (polyimide) non-dispersive
- Typically: 2×10^{-4} (PTFE) < Df < 2×10^{-2} (polyimide) barely dispersive
- Possible in-plane anisotropy due to technological reasons (e.g. stretching)

Glasses

- Typically: Dk > 3.8 (fused silica) non-dispersive
- Typically: 10⁻³ (Heraeus Suprasil) < Df < 2×10⁻² (Schott Mempax) linear increase with freq
- Losses of fused silica strongly depends on the OH-content (production-dependent)

Low-Dk laminates

- Typically: 2.3 (RT5880) < Dk < 4 (FR4) non-dispersive
- Typically: 10^{-3} (RT5880) < Df < 10^{-2} (FR4) linear increase with frequency
- Glass fibers are one of major reasons for the loss increase with frequency

Semiconductors

- Silicon: Dk = 11.65 non-dispersive
- Silicon: Losses are mainly shaped by resistivity (ρ)

EMArges

Frequency (GHz) **Transmission spectra** Measured

twice

Two orientations of the sample

In-plane anisotropy

X-cut quartz (Thickness: $492 \pm 1 \mu m$)

PET foil (Thickness: $100 \pm 3 \mu m$)

Please visit us

Booth # 451

