From Detection to Classification: The Next Generation of Automotive Radars

¹Juergen Hasch

¹Robert Bosch GmbH, Corporate Research and Advance Development
Outline

• Status of Automotive Radar
 – Market Trends
 – Advanced Driver Assistance (ADAS)
 vs.
 Highly Automated Driving (HAD)
• Improving the Performance of Radar Sensors
• Central versus Edge processing
• Conclusion
Market Trends

- ADAS Radar sensors are dominating the market.
- HAD occupies a small, but increasing fraction of the Radar market.

Based on data from Yole Developpement
Driver Assistance vs. Automated Driving

ADAS Sensors

- Built for specific applications like
 - Adaptive Cruise Control
 - Automatic Emergency Brake
 - Vulnerable Road user protection
- High volume, cost sensitive
- Usually a standalone sensor

HAD Sensors

- Not limited to a specific application scenario:
 - Provide the best sensing performance in all circumstances
 - Sensor fusion with Video and Lidar is important
- Currently low volume, reduced cost sensitivity
- Often uses centralized processing
Driver Assistance vs. Automated Driving

ADAS Sensors
- Only tens to a few hundred reflexes
- Optimized for a certain use-case
- Only basic classification

HAD Sensor
- Thousands of reflexes creating high-resolution Radar “images”
- Enables dependable object classification
- Video-like update rates
What to Classify?

Video sensor capabilities

- Street lane detection
- Free space estimation
- Reconstruction and Segmentation
- Traffic light detection, road signs
- Object Detection and Classification (e.g. vehicles, persons)

Feasible using Radar?

- Yes
- No
- Question mark
Improving Sensor Performance

Raw sensor performance
• Distance resolution and accuracy:
 Modulation bandwidth, SNR
• Velocity resolution and accuracy:
 Measurement time, SNR
• Angle resolution and accuracy:
 Number of antenna channels, SNR

Classification performance
• Dynamic Range
 – SNR, antenna beam focusing, improved distance, velocity and angle separation to achieve “image”-like data,
• Improved feature extraction
 – Additional processing steps (Microdoppler, SAR, Machine Learning)
Improving Performance: Frontend

Improve range separation
Allow a better separation between peaks in the receive spectrum and also improve detection of weak peaks.

- Reduce VCO phase noise
- Improve PLL linearity
Improving Performance: Frontend

Improve distance range
• Higher transmit power
• More transmit channels for MIMO and phased array operation

Drawbacks
• Higher power consumption
• More self-interference
• More RF package pins required
Improving Performance: Frontend

Improve dynamic range and angle separability

- Higher sensitivity
- IQ receivers
- More receive channels for MIMO operation

Drawbacks

- A MIMO multiplexing scheme beyond TDM is required.
- Additional processing power required for each additional channel
- More RF package pins required
Improving Performance: Algorithms

Synthetic Aperture Radar

- Allow very high side-looking angle resolution

Drawbacks

- Storing of raw data required for coherent integration.
- High compute performance required for backprojection algorithm.

Range processing (per chirp)

Backproject each chirp into SAR image

Accumulate coherently all projections

SAR image
Improving Performance: Algorithms

Machine Learning based Classification

• Classification at spectrum level
• Based on trained models using measured and labeled data

Drawbacks

• Higher compute bandwidth for neural networks working on raw data
• Memory for coefficients
Improving Performance: Interference

- Make sure high-resolution images are not distorted due to other Radars

- Example:
 - Highway scene with 60 cars, each equipped with 3 radars

- Approaches
 - Local (receiver hardening, signal healing algorithms)
 - Cooperative (common avoidance behavior like moving inside the allowed frequency band)
 - Connected (coordinated avoidance using a data connection)
Local vs Centralized Processing

Standalone Sensors

- All radar-related processing is done in the sensor, only high-level data is exchanged
- Standalone operation possible
- Low-speed bus connection

Radar Head Only

- Most processing is done in a central unit
- Algorithms with high requirements on compute and memory feasible
- Fusion between sensors and different sensor modalities (Lidar, Video) possible
- High-speed bus connection from sensor to central processing unit required
Edge or Central Processing

- Where do we put the interface between local and central processing?

Example values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td># of receive channels</td>
<td>8</td>
</tr>
<tr>
<td># of samples per chirp</td>
<td>1024</td>
</tr>
<tr>
<td># of chirps per frame</td>
<td>1024</td>
</tr>
<tr>
<td>ADC quantization Bits</td>
<td>14 Bit</td>
</tr>
<tr>
<td>Sampling rate</td>
<td>250 Ms/s</td>
</tr>
<tr>
<td>Resulting data rate</td>
<td>28 Gbit/s</td>
</tr>
</tbody>
</table>

Parameter Value

- **# of receive channels**: 8
- **# of samples per chirp**: 1024
- **# of chirps per frame**: 1024
- **ADC quantization Bits**: 14 Bit
- **Sampling rate**: 250 Ms/s
- **Resulting data rate**: 28 Gbit/s
Conclusion

• Two driving forces in Automotive Radar:
 – Advanced Driver Assistance
 – Highly Automated Driving

• Get most out of a Radar
 – Hardware improvements
 – Advanced Algorithms

• Compute distribution
 – Local processing with edge computing
 – Central processing for highest performance