CMOS mm-wave imaging radars: State-of-the-art and a peek into the future!

1 Vaadim Isakov, 2Venkatesh Srinivasan

1TU Braunschweig, 2 Texas Instruments
D-Band FMCW Radars: System and Circuits

¹Akshay Visweswaran

¹imec
FMCW Radars : Range Auto-correlation

- IF beat proportional to ToF (and range)
- Observation time ≈ Chirp duration
High Frequency Radars: Fine resolution

- Broad bandwidth: Finer range resolution
- A high f_c: Higher displacement responsivity
- Larger arrays (fixed form factor): Finer angular resolution

\[\phi_{\text{res}} = \frac{\lambda_0}{A_{\text{array}}} \]
\[\frac{c \, \omega_f}{2 \Delta f_{RF}} \]
\[\phi = \frac{d \, \lambda_0}{4 \pi} \]
Target applications at 145 GHz: Heartbeat detection and Gesture recognition

- Broad bandwidth: 10GHz at <10% $\Delta f/f_0$
 - Minimum Range resolution: 1.5 cm
 - Displacement responsivity: 2π-rad/mm
 - Angular resolution: 0.5 rad
 - Velocity resolution: 1-km/hr
 - IF Bandwidth: 15 MHz

- Integrated antennas → compact, reliable
- MIMO Radar: 16-element virtual array
- Complete system performance and link summary: JSSC 2021-[1]

<table>
<thead>
<tr>
<th></th>
<th>Gestures</th>
<th>Heartbeat</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCS (dBsm)</td>
<td>-40</td>
<td>-40</td>
</tr>
<tr>
<td>Range (m)</td>
<td>0.1 – 1</td>
<td>0.5 – 7</td>
</tr>
</tbody>
</table>
The SNR bottleneck at High Frequencies

- Pathloss increases for a SISO link due to smaller antennas
- RCS reduces with object size: -40dBsm (people: 0-5 dBsm, cars 10-13 dBsm)
- Fast chirps help circumvent flicker noise at IF

Reflected power P_{RX} and Captured fraction

$$P_{RX} = \frac{P_{TX}}{4\pi \cdot d^2} G_{TX} \cdot \sigma \times \frac{1}{4\pi \cdot d^2 \cdot A_w}$$

where

$$A_w = \frac{G_{RX} \cdot \lambda_0^2}{4\pi}$$

Floor noise N_{floor}

$$N_{floor} = -174 + 10 \cdot \log \Delta f_{IF} + NF$$

$$\Delta f_{IF} = \left[\left(\frac{2R_{min} \cdot \Delta f_{RF}}{c \cdot T_c} \right), \left(\frac{2R_{max} \cdot \Delta f_{RF}}{c \cdot T_c} \right) \right]$$
Negative SNR at IF and Processing Gain

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Gesture</th>
<th>H.Beat</th>
<th>Units</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radar range – ([R_{min}, R_{max}])</td>
<td>[0.1,1]</td>
<td>[0.5,7]</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Output RF power per TX – (P_{TX})</td>
<td>0.1 (-10)</td>
<td>10 (10)</td>
<td>mW (dBm)</td>
<td></td>
</tr>
<tr>
<td>Received SISO power – (P_{RX})</td>
<td>-132.7</td>
<td>-146.5</td>
<td>dBm</td>
<td>(10 \cdot \log \left(\frac{P_{TX}G_{TX}G_{RX}\lambda_0^2}{(4\pi)^3 \cdot d^4} \right) + 30)</td>
</tr>
<tr>
<td>RX Noise figure – (NF)</td>
<td>8</td>
<td>8</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Noise Floor – (N_{floor})</td>
<td>-94.2</td>
<td>-94.2</td>
<td>dBm</td>
<td>(-174 + 10 \cdot \log \Delta f_{IF} + NF)</td>
</tr>
<tr>
<td>SNR at IF – (SNR_{IF})</td>
<td>-38.4</td>
<td>-52.2</td>
<td>dB</td>
<td>(P_{RX} - N_{floor})</td>
</tr>
</tbody>
</table>

SNR improvement:
- Array gain from MIMO operation
- Signal processing (Range-Doppler FFTs and digital filtering)
- Virtual array of $N_{TX} \times N_{RX} \rightarrow$ TX: $\lambda_0/2$ and RX: $N_{TX_A} \times \lambda_0/2$
- One-way pattern containing TX and RX : Array gain = $10\log(N_{TX} \times N_{RX})$
- Orthogonality (cross-corr. of all TX signals ~0) – Code domain MIMO
- Reduction in max. unambiguous velocity by a factor $1/N_{TX}$
Range processing gain: Fast-time FFT

- Spectrum from \(-f_s/2\) to \(f_s/2\) in steps of \(f_s/N\)
- Gain = \(10\times\log[(1/2)\times(N_R/\text{OSF})]\)
- Freq. res. at IF = \(f_s/N_R = 1/T_c\) → Range res. = \(c/2\Delta f_{RF}\)
- Windowing: Range res. = \([c\times w_f/2\Delta f_{RF}]\) and Gain = \(10\times\log(N_R/(2\times\text{OSF})) - W_{PL}\) ([1]-[3])
Doppler processing gain: Slow-time FFT

Range-Doppler Map

- Doppler FFT → $f_{s_dop} = 1/(T_C + T_r)$: $-f_{s_dop}/2$ to $f_{s_dop}/2$ in steps of f_{s_dop}/N_{dop}
- Gain = $10 \times \log(N_{dop})$
- $N_{dop} = (f_{s_dop} \lambda_0 / 2v_{res})$

Digital filtering: Heart beat

- Range FFT: complex values in range bins
- Rel. phase change monitored via digital filtering in target range bin
- Gain = $10 \times \log10(f_{s_dop}/\Delta f_{filter})$
Signal processing gain enables detection

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Gesture</th>
<th>H.Beat</th>
<th>Units</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNR at IF – SNR_{IF}</td>
<td>-38.4</td>
<td>-52.2</td>
<td>dB</td>
<td>$P_{RX} - N_{floor}$</td>
</tr>
<tr>
<td>Range Processing gain - G_{PR}</td>
<td>12.2</td>
<td>20.7</td>
<td>dB</td>
<td>$10 \cdot log \left(\frac{1}{2 OSF} \right) - W_{PL}; W_{PL, Blackman, Harris} \sim 3dB$</td>
</tr>
<tr>
<td>Doppler Processing gain – G_{PDop}</td>
<td>27.2</td>
<td>-</td>
<td>dB</td>
<td>$10 \cdot log(N_{Dop})$</td>
</tr>
<tr>
<td>Digital filtering gain – G_{DF}</td>
<td>-</td>
<td>32.5</td>
<td>dB</td>
<td>$10 \cdot log \left(\frac{f_{s, Dop}}{\Delta f_{Digital, filt}} \right)$</td>
</tr>
<tr>
<td>Array Gain – G_{A}</td>
<td>6</td>
<td>6</td>
<td>dB</td>
<td>$10 \cdot log(N_{TX} \cdot N_{RX}); N_{TX} = N_{RX} = 2$</td>
</tr>
<tr>
<td>Code-domain MIMO gain– G_{CM}</td>
<td>3</td>
<td>3</td>
<td>dB</td>
<td>$10 \cdot log(N_{TX})$</td>
</tr>
<tr>
<td>Signal Processing Gain – G_{DSP}</td>
<td>48.4</td>
<td>62.2</td>
<td>dB</td>
<td>$G_{PR} + G_{A} + G_{DF} + G_{CM}$</td>
</tr>
<tr>
<td>Target SNR – SNR_{eff}</td>
<td>10</td>
<td>10</td>
<td>dB</td>
<td>$SNR_{IF} + G_{DSP}$</td>
</tr>
</tbody>
</table>
Overview of the Radar System

- On-chip antennas → Leakage suppression
- Duty-cycled FM transmission (low power mode)
- Fast chirps (5-50us, 103kHz e_{rms}) : ↑Doppler resolution + avoid 1/f noise

JSSC 2021, [1]

TX: 127-154GHz; EIRP = 11dBm
RX: 138-151GHz; NF = 8dB; Gain 24-84dB
The Transmit path (0.9V supply)

- Spatial power combining via on-chip dipoles
- ϕ-inversion for outer-code MIMO
- x3 frequency multiplication ($15\% \Delta f/f_0$):
 - Harmonic self-mixing tripler
 - $2f_0$ trap at transformer center-tap
145-GHz Front-End Components: PA and LNA

- Custom Imec device models (up to 67GHz)
- \(C_n : \) MOM capacitors
- Fan-out + round-table layout
- Stand-alone PA: \(P_{\text{sat}} = 7 \text{dBm} (7\%) \) – [5]
- LNA: Stagger tuned for flat response
- On-chip Antenna customized for RX NF (~8dB)

PA: \(W_{\text{stages}_1-4} = 16,20,40,80\mu\text{m} \)
LNA: \(W_{\text{stages}_1-4} = 12,20,20,20\mu\text{m} \)
Simulated Performance of the Transmitter

- \(P_{sat} \) of 9 dBm with a DC-RF efficiency of \(~5.8\%\)
- Bandwidth expansion when the PA is saturated: 25 GHz
Sub-arrayed Dipole Antenna

- Constructive interfere (pattern-fill AMC)
- Thin silicon substrate ~100µm (attenuate higher order modes)
- \(d = \lambda_{\text{half-guide}} \) TM\(_0\) : partially cancel substrate waves (\(\uparrow \eta_{\text{rad_sim}}\) by ~15%)
- RF absorber on PCB mitigates effect of edge radiation
Sub-arrayed Dipole Antenna: E-field distribution

- Substrate waves are partially cancelled
- Reduction of edge radiation
- η_{rad_sim} by ~15%
Receive path (0.9V RF and 1.8V IF)

- Replica of TX buffering and up-conversion
- 6th order filter for noise and alias at $f_s/2$ (DSP clock rate 80MHz)
- G_m interface: preserves NF + HPF + shift supply domain + DC-offset block
- TX-leakage suppression : delay control + offset cancellation
Delay controlled leakage neutralization

\[\tau_{\text{comp}} = \Sigma \tau \] : removes DC component, PN skirt; residual PA noise stays

\[\tau_{\text{comp}} < \Sigma \tau : f_{\text{beat}} > f_{\text{ramp}} \] : leakage appears as \(f_{\text{beat}} \) at IF

\[\tau_{\text{comp}} < \Sigma \tau : f_{\text{beat}} < f_{\text{ramp}} \] : DC + sidebands at \(n f_{\text{ramp}} \) (decay as \(\tau_{\text{comp}} \rightarrow \Sigma \tau \))

Fixed delay compensates the array: range resolution is 2.7 cm ~ 15 \(\times \) \(\lambda \)
ICs: SISO TRX and Single-RX Dual-TX Chipset

- SISO TRX: dual PA drive to sub-array elements
- Dual-TX chipset: Single PA drive to sub-array elements
- RX is the same in the SISO and stand-alone version
MIMO radar implementations: 1x4 and 4x4

2x2 MIMO assembly

\[
\begin{array}{c}
\text{TX} & \xrightarrow{\lambda/2} & \text{TX} & \xrightarrow{\lambda} & \text{RX} & \xrightarrow{\lambda/2} & \text{RX} \\
\xrightarrow{\text{3-dB Splitter}} & & & & & & \\
\xrightarrow{\text{PLL}} & & & & & & \\
\xrightarrow{\text{pcb}} & & & & & & \\
\end{array}
\]

4x4 MIMO assembly

\[
\begin{array}{c}
\text{TX} & \xrightarrow{\lambda/2} & \text{TX} & \xrightarrow{\lambda} & \text{RX} & \xrightarrow{\lambda/2} & \text{RX} \\
\xrightarrow{\text{PLL}} & & & & & & \\
\xrightarrow{\text{pcb}} & & & & & & \\
\end{array}
\]
MIMO Radar Module

- Xilinx Zedboard IF outputs
- MIMO radar
- ADC board
- Add-on board
- PLL
- ADC board
- IC assembly
 - ADCs 14-bit TI™
 - MIMO Radar, 16-GHz PLL
- SPI control
- Voltage regulators, 32b µ-controller
- 80-MHz clock
- Sync pulse
- Network (Gbps Ethernet)
- USB
- HOST PC MATLAB™

- Xilinx™ Zedboard Memory, FFTs, Digital filtering
- Development platform

- Development platform

- Add-on board

- Add-on board
TX characterization: Agilent PNAx & VDI Extender

- Power at 145GHz vs. distance: expected $1/r^2$ far-field gradient
- 3dB bandwidth: 127-154GHz (SISO TX) and 131-153 GHz (dual-TX IC)
- EIRP 11.6 dBm (SISO TX) and 8.4 dBm (dual-TX IC)
- 138-151GHz RF bandwidth
- Peak CG= 84dB with 57dB prog.
- IF bandwidth 400kHz to 17MHz
Radar Measurements: Delay control

- Noise autocorrelation test: shows improvement in NF with delay control
- During radar operation, delay control plays a significant role in mitigating leakage
Radar Measurements: Range resolution

- Measurements compare well with theory taking into account chirp non-linearity
Heart beat and respiration Measurements

(a) Heartbeat Emulator
(b) MIMO Board

(c) Speaker diaphragm

(d) Phase (degrees)

Respiration

Nexus-10 resp. rate: 16.9 breaths/min.

Radar resp. rate: 16.7 breaths/min. (filtered)

(a) Heartbeat probes
Our Radar
NexXus-10 MK-II
Sync pulse, and readout
Respiration waist belt

(b) ECG Nexus-10 heartrate: 78.7 bpm
(c) Radar Heartrate: 79.1 bpm (filtered)
(d) Nexus-10 resp. rate: 16.9 breaths/min.
Gesture detection and recognition

- Hand illuminated at several 100 frames/sec
- R-D maps in each beam direction (+30, 0, -30 degrees)
- Gesture is captured in data cubelets (range bins x Doppler bin x Angle bins)
- Sent to a machine learning classifier for recognition
Comparison with State of the Art designs

<table>
<thead>
<tr>
<th>Reference</th>
<th>This work SISO TRX</th>
<th>This work TRX chipset</th>
<th>[54]</th>
<th>[55]</th>
<th>[56]</th>
<th>[57]c</th>
<th>[58]</th>
<th>[7]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>28nm CMOS</td>
<td>28nm CMOS</td>
<td>0.13μm SiGe</td>
<td>65nm CMOS</td>
<td>45nm CMOS</td>
<td>0.35μm SiGe</td>
<td>55nm SiGe</td>
<td>35nm mHEMT</td>
</tr>
<tr>
<td>Radar type</td>
<td>FMCW</td>
<td>FMCW</td>
<td>FMCW</td>
<td>Pulsed</td>
<td>FMCW</td>
<td>FMCW</td>
<td>FMCW</td>
<td>FMCW</td>
</tr>
<tr>
<td>RF frequency [GHz]</td>
<td>145</td>
<td>145</td>
<td>240</td>
<td>160</td>
<td>79</td>
<td>60</td>
<td>221</td>
<td>240</td>
</tr>
<tr>
<td>TRX Bandwidth [GHz]</td>
<td>13</td>
<td>13</td>
<td>60</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>62.4</td>
<td>40</td>
</tr>
<tr>
<td>Range resolution [mm]</td>
<td>30a</td>
<td>30a</td>
<td>3</td>
<td>21</td>
<td>38</td>
<td>21</td>
<td>2.4</td>
<td>3.7</td>
</tr>
<tr>
<td>Channels</td>
<td>1TX-1RX</td>
<td>2TX Chip</td>
<td>1RX Chip</td>
<td>1TX-1RX</td>
<td>4TX-4RX</td>
<td>3TX-4RX</td>
<td>2TX - 4RX</td>
<td>1TX-1RX</td>
</tr>
<tr>
<td>TX Power/EIRP [dBm]a</td>
<td>11.6 (EIRP)</td>
<td>8.5 (EIRP)</td>
<td>5</td>
<td>4</td>
<td>10.8</td>
<td>4</td>
<td>14b (EIRP)</td>
<td>6</td>
</tr>
<tr>
<td>RX Gain [dB]</td>
<td>87</td>
<td>94</td>
<td>10</td>
<td>42.5</td>
<td>NA</td>
<td>19</td>
<td>NA</td>
<td>10</td>
</tr>
<tr>
<td>Noise Figure [dB]b</td>
<td>8</td>
<td>8</td>
<td>21</td>
<td>22.5</td>
<td>18</td>
<td>9.5</td>
<td>28</td>
<td>7</td>
</tr>
<tr>
<td>EIRP/NF variation [dB]</td>
<td>1.5/2.5</td>
<td>1.5/2.5</td>
<td>18/25</td>
<td>3/-</td>
<td>-</td>
<td>3/1</td>
<td>7.7/7</td>
<td>3/3</td>
</tr>
<tr>
<td>IF Bandwidth [MHz]</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>100</td>
<td>15</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chip size [mm2]</td>
<td>6.5</td>
<td>3.8 (2TX)</td>
<td>3.3 (RX)</td>
<td>3.2</td>
<td>20</td>
<td>22</td>
<td>20.2</td>
<td>0.5</td>
</tr>
<tr>
<td>TRX Power diss. for all channels [mW]</td>
<td>500</td>
<td>610</td>
<td>1800</td>
<td>2200c,e</td>
<td>3500d</td>
<td>990e</td>
<td>87</td>
<td>315</td>
</tr>
<tr>
<td>PLL power diss. [mW]</td>
<td>Off-chip</td>
<td>Off-chip</td>
<td>Off-chip</td>
<td>Off-chip</td>
<td>On chip</td>
<td>On-chip</td>
<td>Off-chip</td>
<td>Off-chip</td>
</tr>
</tbody>
</table>

a For a Single TX; b At the center frequency; c On-chip PLL and ADC; d On-chip PLL, ADC and DSP; e Pulsed operation; f RF front-end and VCO; g with an off-chip lens; h Windowed radar resolution demonstrated; i Infineon radar-BGT60TR13C
Summary

- System level overview of D-band MIMO radars: challenges and benefits
- Described SISO TRX and Dual-TX Single-RX chipset for arrayed radars
- Presented delay controlled leakage suppression
 It enables operation at high gain and eliminates leakage and associated PN
- Extensive TRX characterization:
 TX: 11dBm EIRP per on-chip antenna element
 RX: $Z_{antenna}$ customized for RX NF (8dB)
- MIMO radars (1x4 and 4x4) demonstrate heartbeat and gesture detection
The Team

A. Viswaswaran K. Vaesen M. Glassee A. Kankuppe S. Sinha

C. Desset T. Gielen A. Bourdoux P. Wambacq
References

[3]

BACKUP SLIDES
Amplifier Design Details

![Graphs and diagrams related to amplifier design parameters.](image)

- MSG: 145 GHz
- W = 20 μm
- Capacitance, C_R vs. MAG
- Frequency vs. MAG, $K > 1$
- Ref. MSG: $C_R = C_T$
- 11.2 dB
- 5.3 dB
- 145 GHz
- Roller's stability factor, K
- $f_a = 137\,\text{GHz}$
- $f_b = 155\,\text{GHz}$
- VSWR = 1.92

International Microwave Symposium
6 - 11 June 2021, Atlanta, GA
MIMO Radar setup and Gesture pipeline

TX-1
TX-2
PLL
RX-1
ADC
RX-2
ADC

Range, Doppler & Angle Processing

30°

0°

-30°

Cubelets
Hand detection
Conv-1
Conv-2
FC-3
FC-4
LSTM-5
Softmax

Gesture classes