Rad Hard By Design: A Necessity for Today’s Critical Space Missions

Jason Ross

BAE SYSTEMS
• Motivation
 – Space Missions: Why Rad Hard By Design (RHBD)?

• Mission Requirements Overview
 – Performance, Power, Radiation, Reliability

• Architecting RHBD Integrated Circuits (ICs) for Space
 – Requirements Specification
 – Technology Characterization
 – Design Hardening
 – Verification and Validation
Rad Hard By Design: A Necessity for Today’s Space Missions

SPACE MISSIONS: WHY RAD HARD BY DESIGN?
Why RHBD for Space?

• The breadth of space-based electronics missions is expanding
 – Satellite systems are evolving in response to expanding mission requirements
 – The demand for high-performance processing & networking capabilities is rapidly increasing

• Constraints associated with the operating environment drive need for efficiency & reliability
 – The launch cost per unit weight is staggering
 – Space environment limits power availability, complicates thermal dissipation, and eliminates the ability to repair/replace components

• Availability of dedicated rad hard semiconductor foundries is limited at advanced technology nodes
Space Systems Missions

Mission Profiles
• Applications
 – Communications
 – Positioning/Navigation
 – Weather
 – Remote Sensing
• Users
 – Civil
 – Commercial
 – Military

Electronic Functions
• Command & Control
• Data Management
 – Networking
 – Processing
 – Storage
• Sensor Interfaces
 – Analog
 – Digital
 – RF
• Power
Environmental Constraints

• Costs inhibit satellite replacement
 – Cost of the satellite itself
 – Cost of launch
 – Systems cannot be repaired

• Space systems need to:
 1) Last longer than terrestrial counterparts
 • LEO: 2-5 years
 • MEO, GEO: 10-15 years
 2) In harsher conditions
 • Temperature: -55°C - 125°C
 • Space radiation environments
 3) On a fixed power budget
 • 100W-20kW (2015 Avg. US Household: 1.2kW)

LEO: Low Earth Orbit MEO: Medium Earth Orbit GEO: Geosynchronous Earth Orbit

Advertised/Estimated Launch Cost per kg

<table>
<thead>
<tr>
<th>Rocket</th>
<th>LEO</th>
<th>GTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falcon 9¹</td>
<td>Falcon Heavy¹</td>
<td>Atlas V (Min)²,³</td>
</tr>
<tr>
<td>$-</td>
<td>$-</td>
<td>$-</td>
</tr>
</tbody>
</table>

³https://www.rocketbuilder.com/
⁴https://en.wikipedia.org/wiki/Delta_IV
⁵http://breakingdefense.com/2014/05/ula-fires-back-at-spacex-at-space-symposium-details-launch-costs/

3https://www.rocketbuilder.com/
5http://breakingdefense.com/2014/05/ula-fires-back-at-spacex-at-space-symposium-details-launch-costs/
Rad Hard By Design: A Necessity for Today’s Space Missions

RAD HARD BY DESIGN IN SPACE: MISSION REQUIREMENTS
Challenges of Designing for Hi-Reliability

- Environmental Stresses:
 - Temperature extremes & cycles
 - Applied voltage
 - Operational lifetime

- Device Strengths:
 - The ability of a device to withstand a stress
 - Changes over time

- Physics of Failure:
 - Time Dependent Dielectric Breakdown (TDDB)
 - Positive/Negative Bias Threshold Instability (BTI)
 - Electromigration (EM)
 - Hot Carrier Injection (HCI)
 - Radiation

Operating in a space environment increases the stress profile and creates a larger shift between beginning and end of life strength profiles.
The orbital environment is dictated by the mission at hand, and can carry a variety of environmental challenges.
Environmental Radiation Sources

<table>
<thead>
<tr>
<th>Radiation Source</th>
<th>Types of Orbits Affected</th>
<th>Effects of Solar Cycle</th>
<th>Variations</th>
</tr>
</thead>
</table>
| Trapped Protons | LEO, MEO, HEO, Transfer Orbits | Solar Min – Higher Solar Max - Lower | • Geomagnetic Field
• Solar Flares
• Geomagnetic Storms |
| Trapped Electrons | LEO, GEO, HEO, Transfer Orbits | Solar Min – Lower Solar Max - Higher | • Geomagnetic Field
• Solar Flares
• Geomagnetic Storms |
| Galactic Cosmic Ray Ions | LEO, GEO, HEO, Interplanetary | Solar Min - Higher Solar Max - Lower | • Ionization Level
• Orbit Attenuation |
| Solar Flare Protons | LEO (I>45°), GEO, HEO, Interplanetary | During Solar Max Only | • Distance from Sun
• Outside 1 AU, Orbit Attenuation;
• Location of Flare on Sun |
| Solar Flare Heavy Ions | LEO, GEO, HEO, Interplanetary | During Solar Max Only | • Distance from Sun;
• Outside 1 AU, Orbit Attenuation
• Location of Flare on Sun |

https://radhome.gsfc.nasa.gov/radhome/papers/aspen.htm

LEO: Low Earth Orbit
MEO: Medium Earth Orbit
GEO: Geosynchronous Earth Orbit
HEO: Highly Elliptical Orbit

AU: Astronomical Unit (avg. distance from Earth to Sun)
Environmental Radiation Effects

Life-Limiting Effects

- **Total Ionizing Dose (TID)**
 - Protons & Electrons
 - Ionizing charge buildup in semiconductors
 - Parametric degradation, functional failure

- **Displacement Damage Dose (DDD)**
 - Protons
 - Atomic dislocation buildup in semiconductors
 - Parametric degradation, functional failure

- **Single Event Latchup (SEL)**
 - Galactic Cosmic Ray Ions & Protons
 - Ionization-induced latchup
 - Functional interruption, reduction in reliability, permanent failure

Performance-Limiting Effects

- **Single Event Effects (SEE)**
 - Galactic Cosmic Ray Ions & Protons
 - Single Event Upsets (SEU)
 - Persistent data corruption
 - Single Event Transients (SET)
 - Spurious analog signals
 - Logical miscues
 - Single Event Functional Interrupt (SEFI)
 - Example: upset resulting in electronic device misconfiguration

The probability and severity of radiation effect occurrence is driven by the operating environment and the architecture/implementation of the system.
Rad Hard By Design: A Necessity for Today’s Space Missions

RAD HARD BY DESIGN IN SPACE: ARCHITECTURE & DESIGN TRADES
Designing ICs for Space

Requirements Specification
- Environment
- Reliability
- Functional
- Performance

Design Hardening
- Architecture & Design Trades

Technology Characterization
- Semiconductor process selection & characterization

Verification & Validation
- Enhanced DRC
- Radiation/Reliability Analysis
Architecture & Design Trades

REQUIREMENTS SPECIFICATION
Requirements Specification

- Space system architecture drives variety of potential use-cases for ICs
- Understanding primary functional and interface requirements is key to being able to make intelligent architecture & environmental trades
- Cost of design & fabrication for small build quantities influences architecture
Understand the System Concept of Operations

- Architecture trades are driven by intended application & associated performance requirements
 - General-Purpose Processing
 - Command/Control of satellite, payloads, processors, instrumentation, data storage, etc
 - Instrumentation Interfaces
 - Analog/mixed-signal (AMS) ASICs bridge between the digital domain and sensors analog/RF kHz-GHz interfaces
 - Digital Signal Processing
 - Sophisticated processing algorithms data collected by the on-board sensors & instruments are run prior to off-loading
 - Data Networking
 - Data needs to be routed across the system at Gbaud-rates between sensors, processors, memory, and transmitters
 - Reusability/Reconfigurability?

The IC designer has tools to meet a wide range of performance, power, radiation, and reliability challenges, but not without trade-offs.
Economy of Scale: Space Electronics

- **Space ICs:**
 - Small-scale production
 - Fixed mask & foundry costs
- Design process is tailored towards risk avoidance

https://www.extremetech.com/computing/272096-3nm-process-node
Architecture & Design Trades

TECHNOLOGY CHARACTERIZATION
Semiconductor Technology Characteristics

• Radiation & reliability are technology and process dependent

• IC manufacturers are unlikely to modify process for space quantities

• Foundry & technology selection needs to be knowledgeable of process characteristics

Requirements Specification

Design Hardening

Technology Characterization

Verification & Validation
Total Ionizing Dose in Modern Processes

Planar Technologies

- Thinner oxides & pristine interfaces improve TID response

Warning: Bulk field effects, FDSOI edge effects

3-D Technologies (FinFETs)

- New geometries = new variables, but the trend continues

Process and design trades need be TID-conscious, but 100krd-level tolerance is achievable.

Total Ionizing/Non-Ionizing Dose Characterization

Characterization Process

- **Test structures**
 - Transistors, capacitors, field oxide, and SRAM structures
 - Representative of V_T’s, gate dimensions, oxide thicknesses and transistor spacing

- **Facilities**
 - TID: Gamma Ray, X-ray, proton sources
 - DDD: Proton, neutron sources

- **Measurements**
 - I_D-V_G curves
 - Subthreshold leakage
SEE in Modern Processes

- Critical charge
 - The amount of charge needed to flip a bit is decreasing
- Sensitive volume
 - The volume of silicon where a transient ion contributes to Q_{crit} is shrinking
- On-chip density
 - The number of sensitive elements is increasing
- IC complexity
 - Interaction between circuits during SEE can be difficult to predict

Relative Upset Rates vs. Technology Node

SEE characteristics of technology/process drive design-specific impact assessment.

R. Baumann, IEEE Nuclear and Space Radiation Effect Conference, Short Course 2013.
Single Event Effects Characterization

Characterization Process

- Test structures
 - SRAMs, logic chains, SET test circuits
- Facilities
 - Heavy ion and proton accelerators
- Measurements
 - Cross-section vs. LET/Energy
 - Transient pulse-widths
 - Latchup susceptibility
- Data uses
 - Influence design requirements
 - Calibrate models

SET Characterization Example

Reliability in Modern Processes

- Time Dependent Dielectric Breakdown (TDDB)
 - Applied electric fields gradually lower resistivity in gate oxides
- Hot Carrier Injection (HCI)
 - High-energy carriers in the drain inject into gate oxide & degrade I-V characteristics
- Positive/Negative Bias Threshold Instability (BTI)
 - Gate oxide interface states trap charge & shift V_T
- Electromigration (EM)
 - Charge carriers increase resistivity in metal interconnects
- Time, voltage, temperature, and geometry dependent

Space mission requirements exceed typical foundry characterization corners. Mission-specific qualification is usually required for technology insertion program.

Architecture & Design Trades

DESIGN HARDENING
IC Design for High-Reliability

- Perform criticality assessment on sub-blocks
- Choose sub-block IP that is most appropriate
- Implement system-level mitigation where possible and necessary
Critcality Considerations

Where might we tolerate failure?

- Functions protected by system-mitigation (ECC, etc)
 - DDR Interface
 - Data caches
- Secondary functions
 - Telemetry
- Data throughput
 - Downstream filtering/processing, error correction
 - Data caches
 - ADC/DAC
 - SerDes core

Where can’t we tolerate failure?

- Power distribution
 - Regulators and references
 - Target for RHBD
- Clock and reset networks
 - PLL, POR, distribution trees
 - Cause massive SoC interrupt
 - RHBD/Brute-force mitigation
- Mode registers
 - May require outside-intervention to rectify

Opportunities to target high-density or high-performance circuit implementation

High-criticality functions need to prioritize reliability over performance & density
Integrated Circuit IP Trade Space

<table>
<thead>
<tr>
<th></th>
<th>Custom Design</th>
<th>Standard Cell</th>
<th>Hard IP (3rd-party)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>Circuit function designed specifically for application.</td>
<td>Circuit function built from 3rd-party library elements, for licensing fee.</td>
<td>Drop-in 3rd-party block to provide specific function.</td>
</tr>
<tr>
<td>Implementation Cost</td>
<td>Design process, tools, and expertise.</td>
<td>Library license fee. Synthesis, PD, and verification expertise.</td>
<td>Block license fee. PD and verification expertise.</td>
</tr>
</tbody>
</table>

Hybrid Approach: Modern RHBD ICs typically use a combination of commercial standard cell libraries, RHBD standard cell libraries and hard IP blocks.
Integrated Circuit IP Trade Space

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Custom Design</th>
<th>Standard Cell</th>
<th>Hard IP (3rd-party)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraints</td>
<td>Risk of first use. Costly design process.</td>
<td>Some required functions may not be supported/achievable. Locked into process/foundry.</td>
<td>No flexibility in form/fit/function, or SWaP. Locked into process/foundry.</td>
</tr>
<tr>
<td>Radiation Effects</td>
<td>Bottoms-up RHBD-capability.</td>
<td>RHBD libraries available. Non-RHBD adds risk, but can be assessed.</td>
<td>Varies by design. Limited analysis possible, and may not be available in time to be useful.</td>
</tr>
<tr>
<td>Reliability</td>
<td>Maximum flexibility: FEOL and BEOL.</td>
<td>FEOL-constrained, BEOL-flexible.</td>
<td>Varies by design. Limited analysis possible, and may not be available in time to be useful.</td>
</tr>
</tbody>
</table>
Embedded Memory Considerations

- Cell Characteristics
 - Technology
 - Topology
 - Environment

- Error Correction Code
 - Strength
 - Area/Power/Performance penalties

- Memory Scrubbing

http://electroiq.com/blog/2014/02/the-most-expensive-sram-in-the-world-2-0/

- Majority of chip area dedicated to memory
 - Data buffers
 - Data/instruction cache
 - Scratchpad memory
 - Application-specific instantiations

- Major implications on IC power, performance, and radiation/reliability
SRAM Cell SEE Characteristics

90nm SRAM Cell Parameters by Topology, normalized to Commercial

<table>
<thead>
<tr>
<th>SRAM Bit Cell</th>
<th>Area</th>
<th>Setup + Access Time</th>
<th>Power (1kx72 array)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>High-performance, high-density RHBD</td>
<td>2.3</td>
<td>0.9</td>
<td>1.7</td>
</tr>
<tr>
<td>Multi-Mrd RHBD</td>
<td>3.6</td>
<td>1.8</td>
<td>2.5</td>
</tr>
</tbody>
</table>

SRAM Upset Rates by Technology Node and Orbit (upsets-bit/day)

<table>
<thead>
<tr>
<th>ORBIT</th>
<th>20nm Ultra-Scale</th>
<th>45nm Global Foundries</th>
<th>45nm BAE Systems</th>
<th>65nm Global Foundries</th>
<th>65nm Xilinx (V5QV)</th>
<th>65nm Cypress</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO, Background</td>
<td>7.1x10^-9</td>
<td>4.5x10^-8</td>
<td>9.6x10^-10</td>
<td>7.0x10^-8</td>
<td>1.4x10^-6</td>
<td>2.5x10^-7</td>
</tr>
<tr>
<td>GEO, Solar Flare</td>
<td>9.6x10^-6</td>
<td>2.0x10^-4</td>
<td>1.9x10^-6</td>
<td>2.6x10^-4</td>
<td>4.7x10^-3</td>
<td>4.8x10^-4</td>
</tr>
<tr>
<td>1400 km</td>
<td>3.6x10^-7</td>
<td>1.4x10^-6</td>
<td>6.2x10^-8</td>
<td>2.1x10^-6</td>
<td>6.6x10^-6</td>
<td>4.6x10^-6</td>
</tr>
<tr>
<td>ISS</td>
<td>7.6x10^-9</td>
<td>3.0x10^-8</td>
<td>1.3x10^-9</td>
<td>4.7x10^-8</td>
<td>3.1x10^-7</td>
<td>1.1x10^-7</td>
</tr>
</tbody>
</table>

Memory Hardening: ECC

ECC Impacts on Array Error Rates

ECC Impacts on Memory Arrays: Area & Power

<table>
<thead>
<tr>
<th>Array</th>
<th>ECC?</th>
<th>Data Bits</th>
<th>Parity Bits</th>
<th>Total Bits</th>
<th>Area/Pwr Penalty</th>
</tr>
</thead>
<tbody>
<tr>
<td>8k x8</td>
<td>No</td>
<td>65536</td>
<td>-</td>
<td>65,536</td>
<td>0%</td>
</tr>
<tr>
<td>8k x8</td>
<td>SECDED</td>
<td>65536</td>
<td>40,960</td>
<td>106,496</td>
<td>63%</td>
</tr>
<tr>
<td>2k x32</td>
<td>SECDED</td>
<td>65536</td>
<td>14,336</td>
<td>79,872</td>
<td>22%</td>
</tr>
</tbody>
</table>

SECDED: Single Error Correct, Double Error Detect

Applying ECC reduces effective error rate in exchange for area, power, complexity, latency.
ECC and Multiple Bit Upsets

- Probability of multiple bits upsetting (MBU) from single particle strike increases with scaling
 - Scaling increases density of SRAM cells
- MBUs in a single data word complicate ECC
 - Column muxing: physically separating logical neighbors limits this effect

Logic SEE Characteristics: Clock Rate

Logical Capture of SET

- Decreasing clock period increases probability of SET interfering with setup and hold

Logic SEU Sensitivity vs. Frequency

- SEU sensitivity scales linearly with clock frequency

Implementing logic functions trade performance for SEE sensitivity (and power)

Logic SEE Characteristics: Power

- Increased supply voltage increases the critical charge of the circuit
- Increased drive strength dissipates single event generated charge

SEE mitigation by power is effective but costly: use wisely!

Fault Tolerance: Internal Redundancy

Spatial Redundancy
- Triple-mode redundancy
- 3x Area/power penalty

Temporal Redundancy
- Temporal filtering
- Propagation delay penalty
Analog/Mixed Signal Considerations

Single Event Effects

- Single Event Transients are extremely context-dependent
 - Circuit function & design
 - Bias/loading conditions
 - Current & capacitance
 - Considerable RHBD solutions

- System mitigation:
 - Understand a block’s output transient characteristics
 - Apply block-level compensation
 - Harden configuration logic

Total Ionizing Dose

- Thick-gate oxide devices, larger overall geometries, and linear operation increase TID sensitivity
- RHBD by construction e.g. SiGe HBT

SET Characterization of RHBD Folded-Cascode Op-Amp Topologies

Architecture & Design Trades

VERIFICATION AND VALIDATION
Verification and Validation

- Design rule checks can be modified to check radiation & reliability coverage
- Bottoms-up SEE analysis rolls characterization data up to system-level requirements
- Chip qualification and radiation testing validates the design before flight
Modifying Design Rule Checks for Hi-Rel

Reliability

- Time Dependent Dielectric Breakdown (TDBB)
 - Gate oxide area
 - Supply voltage
- Hot Carrier Injection (HCI)
 - Channel length
 - Supply voltage
- Pos/Neg Bias Threshold Instability (BTI)
 - Device utilization
 - Duty factor
- Electromigration (EM)
 - Current density
 - Metal widths/lengths
 - Contact density

Radiation

- Total Ionizing Dose (TID)
 - Device spacing
 - Guardrings
 - Device utilization
 - \(V_T \), oxide thickness, device geometry
- Single Event Latchup (SEL)
 - Well contact density
 - Guardrings
 - Supply voltage

Technology characterization may drive additional design rule rigor.
Integrated Circuit SEE Model

IC SEE modeling follows a bottoms-up methodology and is updated as database evolves. The top level model should aggregate error rate predictions and compare against system requirements.
RHBD IC Flight Qualification

• Qualification testing performed on the final product validates the ability of the chip to meet design requirements
 – Electrical, Mechanical, Extended-Life, Packaging and Radiation
 – Reflective of temperature, lifetime, and functional requirements
 – Qualification plan is agreed to by all parties/stakeholders
 • Reflects the process/technology pedigree, the mission requirements & reliability goals

• Various qualification standards available
 – MIL-PRF-38535
 – MIL-STD-883
 – JEDEC JEP148A
 – ESA 2269000
RHBD IC Radiation Testing

Single Event Effects
• Heavy ion, proton accelerator
• Multiple test modes required
 – Dynamic performance validation
 • Near real-time error detection required
 – Static model validation
 • Built-in memory test, register scan chains
• Test Preparation
 – Remote operation of test equipment
 – Devices de-lidded and thinned

Total Dose
• Electrical testing of critical parameters
 – Multiple dose/characterization steps
 – Dose fixture needs to be free of sensitive components
• Gamma/neutron or proton source
 – Coordinate production test capability with total dose source
• Various sample size scenarios available per qualification standards
Summary

• Operating in space presents unique and complex challenges
• Rad Hard By Design is an effective approach for mitigating radiation effects in modern integrated circuits
• Designing integrated circuits for space requires careful balancing of performance, power, reliability and radiation hardening
Acknowledgements

Thanks to Michael Bear and Andrew Kelly at BAE Systems for their technical support.