FPGA-Based 2-D FIR Frost Beamformers with Digital Mutual Coupling Compensation

This paper describes a technique for de-embedding electromagnetic mutual coupling effects between nearest neighbors of a ULA receiver. Measured S-parameters across a range of frequencies of interest are used in a closed-form mathematical model that relates measured S-parameters, measured LNA reflection coefficients, and transmission line parameters to digital beamformer design equations, such that the beam shape distortions arising from mutual coupling can be compensated in the DSP algorithm. A 5.8 GHz 32-element receiver array with custom receivers and 32-channel Xilinx Virtex-6 Sx35 FPGA based DSP system implementing a real-time complex-valued Frost beamformer operating at IF is proposed to show the benefits of de-embedding mutual coupling for far-field side-lobe suppression. The worst-case side-lobe level is reduced by 11.2 dB, and the average side-lobe level is reduced by 5.2 dB, for a 20 MHz IF signal.