A W-Band SPDT Photoconductive Evanescent-Mode Waveguide Switch

Eric T. Der, Graduate Student Member, IEEE, Thomas R. Jones, Member, IEEE, Alden Fisher, Graduate Student Member, IEEE, Michael D. Sinanis, Member, IEEE, Kambiz Moez, Senior Member, IEEE, Douglas W. Barlage, Senior Member, IEEE, and Dimitrios Peroulis, Fellow, IEEE

Abstract—This letter presents the design, fabrication, and measurement of a silicon micromachined photoconductive evanescent (EVA)-mode waveguide switch operating in a single-pole double-throw (SPDT) configuration. Two EVA-mode waveguides loaded with silicon posts are placed in a Y configuration with a common feeding waveguide. In the absence of photoc excitation, the dielectric posts and EVA channel exhibit a bandpass filter response that allows low-loss propagation of signals on the order of 2.0 dB at 96.7 GHz. When photoexcited, the low conductive posts and EVA channel yield a very high isolation of 36.5 dB up to 102.4 GHz within W-band. The proposed design shows promise for 5G and 6G communication backhaul devices.

Index Terms—5G, 6G, evanescent (EVA) mode, millimeter wave (mmWave), photonductive switch, silicon micromachining, waveguide.

I. INTRODUCTION

To meet the growing demands for connectivity and higher data rates, the fifth generation (5G) of wireless communication systems is expanding into the millimeter wave (mmWave) domain where spectrum is—for the most part—in abundance. However, the utilization of these higher frequency signals presents unique challenges, such as higher path losses, higher atmospheric attenuation, and greater radiation losses from conventional planar microwave transmission lines, such as microstrip [1] and coplanar waveguides [2].

Moving forward, sixth generation (6G) systems are expected to utilize spectrum in the W-band where the aforementioned challenges are further amplified [3]; this requires the development of waveguide interconnects, which have been shown to have relatively low insertion losses (ILs) up to several hundreds of GHz [4]. In mmWave switch technologies, p-i-n diodes, electromechanical switches, and RF MEMS have all been integrated into waveguide-based interconnects. However, electromechanical switches have slow switching speeds, RF MEMS has reliability issues and higher production costs compared with semiconductors, and mmWave p-i-n diodes generally have low power handling and high ILs [5].

Photoconductive waveguide switches, on the other hand, have been shown to be an excellent compromise between the high switching speeds of semiconductor switches while offering relatively high power handling [6]. Furthermore, they have been shown to offer low IL and have high linearity. In [7], it has been shown that the optical power needed to achieve high isolation using photoconductive silicon posts can be reduced by placing them in evanescent (EVA)-mode waveguide channels, albeit sacrificing some bandwidth.

Multithrow switches play a key role in RF communication frontends, such as reconfigurable antennas [8], Rotman lenses [9], and Butler matrices [10], [11], which require common source signals to be routed to different channels robustly. Here, a single-pole double-throw (SPDT) photoconductive EVA-mode switch is designed, analyzed, fabricated, and measured.

II. PRINCIPLE OF OPERATION

Fig. 1 depicts the fundamental concept of a photoconductive EVA-mode SPDT waveguide switch. The EVA region of a waveguide channel has a higher cutoff frequency, which does not normally allow propagation of electromagnetic waves, and has been shown in the literature to behave as an inductive π or T network [12]. However, the addition of silicon dielectric posts is equivalent to placing a shunt capacitor. Together, this combination of reactive impedances, i.e., a shunt inductor from the EVA region along with a shunt capacitor from the silicon
It can be seen that conductivity is dependent on the propagation through the waveguide. No light is present, the HR-Si low-loss dielectric allows RF signal propagation, and the device is isolated. The device is to act as a low-loss dielectric at the mmWave band in the absence of photoexcitation. Furthermore, its relatively low bandgap offers an abundance of high-power optics solutions for inducing high conductivity. The DC conductivity of silicon can be computed as follows [5], [14]:

$$\sigma_{dc} = q(\mu_p + \mu_n)n'$$ \hspace{1cm} (1)

where q is the elementary charge, n' is the excess carrier concentration (assumed to be uniform in the material), and μ_n and μ_p are the carrier mobilities of electrons and holes, respectively. It can be seen that conductivity is dependent on n', which can, in turn, be computed as a function of photoexcitation as follows [5], [14]:

$$n' = \frac{P_0}{\alpha H^2} \frac{1}{\tau} (1 - R)(1 - e^{-\alpha H})$$ \hspace{1cm} (2)

where P_0 is the incident light intensity, R and α are, respectively, the reflection and absorption coefficients of the material, τ the carrier lifetime, and H the height of the semiconducting material under excitation. It can be seen from (1) and (2) that the conductivity of the silicon switching elements increases with optical power. Loading the center of a rectangular waveguide, the HR-Si posts can be used to route the RF signals [5]. When excited with photons above the bandgap energy of silicon ($E_g = 1.12$ eV), the HR-Si posts enter their conductive state and short the TEMode; therefore, the shorting element must be placed $\lambda/2$ away from the junction to provide the mode with an electric “sidewall” [16].

However, $\lambda/2$ impedance transformers do not maintain 180° phase over a wide frequency band, resulting in narrowband responses and stopbands. Since a short-circuited $\lambda/2$ stub results in a low-impedance boundary at the input reference plane, we can introduce a simplified design where a low-impedance switching element is placed right against the Y-junction. By removing the short-circuited stub and placing the PEC boundary right against the junction, the model is effectively reduced to a simple waveguide bend, and a good impedance match and transmission can be maintained over a wide band owing to the absence of resonating structures [17]. Fig. 3 shows the simulated impedance of a reflected signal from an off-state EVA channel where the posts are made conductive via laser excitation; it can clearly be seen that an EVA-mode switch in its off-state resembles a low-impedance boundary. It can, therefore, be inferred that the bandwidth of the proposed SPDT switch can be maximized by placing the individual EVA-mode switching elements as close to the Y-junction as possible.

B. SPDT Switch Design With E-Plane Bend Transitions

With the theoretical basis of optimizing a switched waveguide Y-junction established, we can now integrate the standalone silicon photoconductive EVA-mode waveguide switch into the proposed SPDT configuration. To fully take advantage of the low propagation loss of the waveguide switch technology at W-band and beyond, it is prudent that the entire system be fed and interconnected purely with waveguide structures. This proposed switch is fed with standard WR-10 waveguides. Fig. 4 depicts an SPDT EVA-mode switch with an E-plane bend to be constructed from stacked silicon wafers [18], which also serves as an impedance transformer for interfacing a WR-10 waveguide flange to the 200-µm-high channel of the switch. The impedance match can be optimized by tuning the step widths (a_0 and a_1), step lengths
Fig. 3. Simulated reflection coefficients of a single-throw EVA-mode waveguide switch de-embedded up to the EVA section, with different combinations of posts excited by light. When both posts are excited, the \(S_{11} \) response indicates a low-impedance boundary (likewise \(S_{22} \) due to symmetry). When only post 1 is excited, \(S_{11} \) indicates a low-impedance boundary, whereas \(S_{22} \) indicates a high-impedance boundary. The \(ON \)-state with no posts excited indicates good impedance matching, as expected.

Fig. 4. 3-D model of a two-pole photoconductive EVA-mode SPDT switch. By exciting the switch posts on the identical branches connected to ports 2 and 3, one can determine which branch to cutoff RF signal propagation to from the common port (port 1). The three \(E \)-plane bend transitions have identical dimensions, where \(s_0 = 0.35 \) mm, \(s_1 = 0.74 \) mm, \(s_2 = 1.2 \) mm, \(a_0 = 2.4 \) mm, \(a_1 = 2.8 \) mm, \(b_0 = 1.39 \) mm, and \(b_1 = 1.35 \) mm. The graph shows the simulated and measured data of a 20.75-mm line with the \(E \)-bend transitions that branch off at the same angle as the proposed switch. (\(b_0 \) and \(b_1 \)), and the offsets among the steps (\(s_0 \), \(s_1 \), and \(s_2 \)) in the propagating direction. In this design, the common waveguide feed (port 1) is directly branched off into two EVA-mode channels at an angle of 67.8°. The silicon posts in the port-3 branch were simulated with a conductivity of 425 S/m to emulate its photoexcited state, not allowing microwave propagation. Port 2 is the through port in the simulation; its silicon posts are not excited and are assumed to have a conductivity of 0.1 S/m (for 1-\(k \)·cm HR-Si wafers). The arms on ports 2 and 3 must be extended by 15.5 mm in order to fit the UG-387/U flange connectors. The measured peak IL of the transitions with a 20.75-mm length of line is 1.6 dB.

IV. FABRICATION

Fig. 5 depicts the fabrication process flow for the proposed device. Deep reactive ion etching (DRIE) is used on a 300-\(\mu \)m HR-Si wafer (device wafer) to form the waveguide channel and posts on the front side (FS) as well as the optical fiber feed holes on the backside (BS) and through holes for aligning standard UG-387/U flange connectors. A second 800-\(\mu \)m Si wafer (transition wafer) is also etched using DRIE on both sides to form the two steps of the \(E \)-plane bend transition and the through holes for the flange connectors. Both wafers are metalized with 80 nm of titanium for adhesion, 1.2 \(\mu \)m of copper, and 25 nm of gold to prevent oxidation. In measurements, the two wafers are sandwiched and tightened with screws that are torqued onto the flange connectors and a custom laser machined metal flange piece.

V. RESULTS AND DISCUSSION

The block diagram and photograph of the experimental setup for characterizing the \(S \)-parameters of the fabricated devices described in Section II. The N5260 extender modules allow for RF characterization up to 110 GHz. An adapter is used to interface the 1.0-mm coaxial output from the extender modules to the WR-10 connectors on the DUT. The optical setup uses a Wavelength Electronics LDSCHA laser diode driver, a 915-nm laser diode from Sheauanm Laser Inc., an OZ Optics nonpolarizing beam splitter, and two 400/440-\(\mu \)m multimode fibers.
TABLE I

COMPARISON OF THE PROPOSED SPDT SWITCH TO THE EXISTING TECHNOLOGIES

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Technology</th>
<th>Frequency Range (GHz)</th>
<th>10-dB RL (FBW (%))</th>
<th>Peak IL (dB)</th>
<th>Isol. (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This Work</td>
<td>Photoconductive Si (Waveguide)</td>
<td>84.3–102.4*</td>
<td>19.4*</td>
<td>2.0*</td>
<td>36.5*</td>
</tr>
<tr>
<td>[16]</td>
<td>Photoconductive Si (SIW)</td>
<td>74 – 85.8</td>
<td>15</td>
<td>2.2</td>
<td>30</td>
</tr>
<tr>
<td>[17]</td>
<td>PIN Diode (SIW)</td>
<td>7.0 – 10.2</td>
<td>37</td>
<td>2.1</td>
<td>10</td>
</tr>
</tbody>
</table>

* Results reported include transition losses.

off-state, with the laser switched on, are shown in Fig. 7. The device is able to achieve a 10-dB return loss (RL) bandwidth spanning 84.3–102.4 GHz with a peak thru IL of 2.0 dB at 96.7 GHz and a minimum isolation of 36.5 dB using 582 mW of total optical power. Using just 187 mW of optical excitation, a 35-dB isolation can be maintained with only an additional 0.2-dB IL added, a significant benefit of optical excitation, a 35-dB isolation can be maintained with only an additional 0.2-dB IL added, a significant benefit of the EVA-mode switch. Compared with the measured transition line in Fig. 4, it can be seen that the SPDT switch itself only adds 0.4-dB IL.

In Table I, the proposed device is compared with other integrated waveguide SPDT switches. The proposed design shows the lowest IL (even with transition losses included) at the highest frequency band and also achieves the highest isolation. Furthermore, an in-line transition in future implementations can reduce the length of line needed and further reduce the total IL.

VI. CONCLUSION

The design and experimental results of a W-band silicon micromachined photoconductive EVA-mode waveguide SPDT switch were presented. Between 85 and 100 GHz, the maximum IL was shown to be 2.0 dB at 96.7 GHz, and a minimum isolation of 36.5 dB was achieved between the common and isolated ports. The results show promise for the proposed switch to be used in 5G and 6G communications.

ACKNOWLEDGMENT

Part of this work was conducted at the nanoFAB Centre, University of Alberta, Edmonton, AB, USA. Thomas Jones would like to thank Dr. Michael Finot and Dr. Pedro Duarte of Rocky Mountain Micro Machining (RM3) for their help with fabrication of the devices.

REFERENCES